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Introduction: Univariate Maxima

Let X1, Xo, ... be 2id r.vs with common df F'.

Fisher-Tippett Theorem: Let U™ = max(X;,7 = 1,...,n). If there
exist a r.v U with nondegenerate df G and normalizing constants a, > O,
bn, such that a, U™ + b, — U, then G belongs to the type of one of the
following

do(x) = exp(—z79), x>0 = (G is of Fréchet type
Vo(z) = exp(—(—x)%), <0 = G isof Weibull type
Nx) = exp(—e %), xr € R = Gisof Gumbel type

where o« > 0, and we write F' € MaxDA(G).



Introduction: Univariate Minima

Let L™ = min(X;,i=1,...,n). Ifthere exist a r.v L with nondegenerate
df G and normalizing constants a,, > 0, b, such that a,, L™ +b,, — L, then
G belongs to the type of one of the following

d¥(zx) = 1—exp(—(—x)" %), <0 = Gisoftypel
Wi(z) = 1—exp(—z9%), x>0 = Gisoftypell
N (x) = 1—exp(—e?), reR = Gisoftype lll

where o« > 0, and we write F' € MinDA(G).



Univariate Phase-Type Distribution

Let {Y'(¢), t > 0} be a CTMC with state space ¢ = {A,1,...,d}, initial
distribution 3 = (0, «), and infinitesimal generator

O O
Q= ( -Ae A )
Then the nonnegative random variable X of the time until absorption into

state Ais PH(«,A,d).

F(z) = Pr(Y(z) ¢ {A)Y) = aee, z>0.



Maxima: Univariate Case

The matrix A has a real dominant eigenvalue —n, not necessarily unique,
such that for all complex eigenvalues \, Re(\) < —n.

1. if —n is a simple eigenvalue of A then

Nz = e "M+ 0(1)), asz — oo

2. if —n has algebric multiplicity I, then there exists k € [0,] — 1]

Nz — 2Fe (M 4+ 0(1)), as x — oo,

where k£ 4 1 is the maximal order of Jordan blocks corresponding to —n,
called the index of —n.

Let X be a PH(a, A, d) random variable. Then FF € MaxDA(NA) with
normalizing constants

lognc+ kloglogn — klogn
an:—’bn:
n n

, where ¢ = aMe > 0.



Minima: Univariate Case

Let X is PH(a,A,d). Then m is the minimum number of transitions
needed for the underlying CTMC to be absorbed if and only if

—aA™e >0andwhenm >2, —aAte=0,¢=1,...m— 1.

Let X be a PH(«,A,d). Then FF € MinDA(W},) with normalizing con-
stants

IN 1/m
an — (ﬁ) , bn — O,

nc

where ¢ = —aA™e.



Multivariate Phase-Type Distribution

e {Y(t),t > 0} is a CTMC with finite state space £ = {A,1,...,d},
initial distribution 3 = (0, ) and infinitesimal generator Q

e £&,1 = 1,...,p, are nonempty stochastically closed subsets of the
state space ¢ such that N!_, & = {A}, and

p
E=(J &) | J¢o for some subset &g C £ with & )& =0,i=1...,p
i=1

e X, =inf{t>0:Y@®)eg),i=1,...,p

The joint distribution of (X1, ..., Xj) is called a MPH random vector with
representation (o, A, &, €1, . ..,&p). Thus, a MPH distribution is a joint dis-
tribution of first passage times to various overlapping subsets of the state
Space &.



Multivariate Phase-Type Distribution (cont'd)

ForO<zp <--- <2y

F(x]-, L. 7'7:]?) = eAxp gp 6A(CCp_]_—CUp) gp_l oo eA(:El_:EQ) gle’

where, for k = 1,...,p, g, Is a d x d diagonal matrix whose <th diagonal
entry, fori = 1,...,d,equals 1if: € £\ & and O otherwise.

The random variable X; represents the first passage time of the CTMC
Into &;. This implies that X; is univariate PH distributed with representation

(apgs A, d+ 1 —[&])



Bivariate Phase-Type Distribution

Agp B; Bj
A=| 0 A; 0 |,
0 0 A,

where, A; represents the subgenerator for states in §; \ {A}, and B; rep-
resents the matrix of transition intensities from states in £y to states in

&\ {A}.

Example: Marshall-Olkin df has subgenerator

—A12 — A1 — A2 A1 A2
A = 0 Ao — Ao 0
O 0 —A12 — A1

F(z,y) = exp{—A1z — Aoy — A\1o max(z,y)}



Multivariate Maxima/Minima

Let XU = (x{V . x§), x@ = xP x§?), .. be iid ran-
dom vectors with common distribution F', and let U(™) pe a random vector
with jth component

UJ(") = max(X]@, i=1,...n).

If there exist a(”), b(") ¢ RP and U with df G such that
a(n)yn) 1 p(n) ¥ U,

then F' € MaxDA(G).
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Componentwise minima

Theorem 1 Let F' be the distribution function of a bivariate PH distribution
with representation (a, A, €&,£1,£&>), and m; be the minimum number of
transitions required in order to enter &;. Then the limiting distribution of the
componentwise minima is given by

e Casel: mi=mo=m

_ x"
G(x1,x0) = exp {—azT — 5" + cmin <—1, —2> } :
C1 €2
where ¢; = —aA"'ig,e, i = 1,2, and c = —aA'e.

e Case 2: m1 = m»
G(z1,x0) = exp(—z™1 — z™2)
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Componentwise maxima

Theorem 2 Let F' be the distribution function of a bivariate PH distribution

with representation (a, A, &,£1,£5). Then the limiting distribution of the
componentwise maxima has the following form:

( L B
e~ € Te—e " exp {%aMleA(mTHOg c,—x1—l0g 01)77 1926},

if 21 +10gc1 < @2+ 10gc2
e e exp {e;jal\/lzeA(ml_Hog Gralog CQ)n_lgle}’
if 22 +10g c2 < #1 +l0g 1

G(z1,20) =«

ifny =n, =nand ky = ko = k, where ¢c; = aM;e > 0 for: =1, 2.

For any other case we have independence, and

G(z1,z2) = exp (—e *1)exp (—e™ *2).
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Pickands’ representation

In the bivariate case, if F' € MaxDA(G)

109(G1(2)G2(y))
where A is the Pickands’ representation function, which is a convex func-
tion on [0, 1] such that max(¢,1 —t) < A(¢) < 1.

G(z,y) = exp {logml(x)c;z(y)m ( 109 G1(2) )} |

( C —
Aliogili-t .
1—%al\/l2677 gztgle, |f0§t§cfﬁc
A() = t2 Aliog 0_2—1t c T
_ n cq1—t i 1
\ 1 ClaMle 1-7'gqe, if c1tos <t<l1
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Example 1

—a p q
a=(1,0,0), A= O —-b 0 |, a<min(be),p+q<a,
O 0 -—c

b—a 1-2 —<,c 1-¢ c1
1 —t+ (moobs) dleta—a)t(l—t)7:, 0<t< G

A(t) =
c—a 1-2 _b,1_b b o
t+ ((b—a)(q—l—c—a)) p(p+0b—a) it (1 —1)-, oiton <t<1

Co

If p =q =0, then A(t) = max(t,1 — 1)
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Example 1 (a)

0.9}
0.8}
0.7}

0.6/

0.5}

(a,b,c,p,q) = (2,3,3,0,0) — solid line
(a,b,c,p,q) = (2,3,3,1,1) — long-dashed line
(a,b,c,p,q) = (2,2.1,2.1,1,1) — short-dashed line
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Example 1 (b)

0.9
0.8
0.7

0.6/

(a,b,c,p,q) = (2,2.1,3,1,1) — solid line
(a,b,c,p,q) = (2,3,2.5,0.1,1) — long-dashed line
(a,b,c,p,q) = (2,3,3,1,0.1) — short-dashed line




Example 2

A(t) =

a=(p,1—p,0,0), nggla

1 — ¢4 25p(1 4 2p) =(4 — p)sts(1 — 1) %,

t+2:(2 —p)(4 —p) 5 (14 2p)st 5 (1 — t)5,

2+44p
Osts 6+3p

24+4p
+3p St
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Example 2 (cont'd)

I
N\
i X~
0.9 e )
| DN pZ
i - —
< I ~ _—
0.7}
0.6
0.2 0.4 0.6 08 1

p = 0 — solid line
p = 0.5 — long-dashed line
p = 1 — short-dashed line
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Conclusions

e for bivariate maxima, a flexible Pickands’ representation is obtained

e for minima, the bivariate exponential Marshall-Olkin df arises in the
limit

e simpler to see in the bivariate case, but our results can be extended to
higher dimensions
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