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Introduction: Univariate Maxima

Let X1, X2, . . . be iid r.vs with common df F .

Fisher-Tippett Theorem: Let Un = max(Xi, i = 1, . . . , n). If there
exist a r.v U with nondegenerate df G and normalizing constants an > 0,
bn such that anUn + bn

w→ U , then G belongs to the type of one of the
following

Φα(x) = exp (−x−α), x > 0 ⇒ G is of Fréchet type

Ψα(x) = exp (−(−x)α), x ≤ 0 ⇒ G is of Weibull type

Λ(x) = exp (−e−x), x ∈ < ⇒ G is of Gumbel type

where α > 0, and we write F ∈ MaxDA(G).
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Introduction: Univariate Minima

Let Ln = min(Xi, i = 1, . . . , n). If there exist a r.v L with nondegenerate
df G and normalizing constants an > 0, bn such that anLn+bn

w→ L, then
G belongs to the type of one of the following

Φ∗
α(x) = 1− exp (−(−x)−α), x < 0 ⇒ G is of type I

Ψ∗
α(x) = 1− exp (−xα), x ≥ 0 ⇒ G is of type II

Λ∗(x) = 1− exp (−ex), x ∈ < ⇒ G is of type III

where α > 0, and we write F ∈ MinDA(G).
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Univariate Phase-Type Distribution

Let {Y (t), t ≥ 0} be a CTMC with state space ξ = {∆,1, . . . , d}, initial
distribution β = (0, α), and infinitesimal generator

Q =

(
0 0

-Ae A

)
Then the nonnegative random variable X of the time until absorption into

state ∆ is PH(α, A, d).

F̄ (x) = Pr(Y (x) /∈ {∆}) = αeAxe, x ≥ 0.
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Maxima: Univariate Case

The matrix A has a real dominant eigenvalue −η, not necessarily unique,
such that for all complex eigenvalues λ, Re(λ) < −η.

1. if −η is a simple eigenvalue of A then

eAx = e−ηx(M + O(1)), as x →∞

2. if −η has algebric multiplicity l, then there exists k ∈ [0, l − 1]

eAx = xke−ηx(M + O(1)), as x →∞,

where k + 1 is the maximal order of Jordan blocks corresponding to −η,
called the index of −η.

Let X be a PH(α, A, d) random variable. Then F ∈ MaxDA(Λ) with
normalizing constants

an =
1

η
, bn =

lognc + k log logn− k log η

η
, where c = αMe > 0.
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Minima: Univariate Case

Let X is PH(α, A, d). Then m is the minimum number of transitions
needed for the underlying CTMC to be absorbed if and only if

−αAme > 0 and when m ≥ 2, −αA`e = 0, ` = 1, . . . m− 1.

Let X be a PH(α, A, d). Then F ∈ MinDA(Ψ∗
m) with normalizing con-

stants

an =
(

m!

nc

)1/m

, bn = 0,

where c = −αAme.
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Multivariate Phase-Type Distribution

• {Y (t), t ≥ 0} is a CTMC with finite state space ξ = {∆,1, . . . , d},
initial distribution β = (0, α) and infinitesimal generator Q

• ξi, i = 1, . . . , p, are nonempty stochastically closed subsets of the
state space ξ such that

⋂p
i=1 ξi = {∆}, and

ξ=(
p⋃

i=1

ξi)
⋃

ξ0 for some subset ξ0 ⊂ ξ with ξ0
⋂

ξi = ∅, i=1,. . .,p

• Xi = inf{t ≥ 0 : Y (t) ∈ ξi}, i = 1, . . . , p

The joint distribution of (X1, . . . , Xp) is called a MPH random vector with
representation (α, A, ξ, ξ1, . . . , ξp). Thus, a MPH distribution is a joint dis-
tribution of first passage times to various overlapping subsets of the state
space ξ.
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Multivariate Phase-Type Distribution (cont’d)

For 0 ≤ xp ≤ · · · ≤ x1

F̄ (x1, . . . , xp) = α eAxp gp eA(xp−1−xp) gp−1 · · · eA(x1−x2) g1e,

where, for k = 1, . . . , p, gk is a d × d diagonal matrix whose ith diagonal
entry, for i = 1, . . . , d, equals 1 if i ∈ ξ \ ξk and 0 otherwise.

The random variable Xi represents the first passage time of the CTMC
into ξi. This implies that Xi is univariate PH distributed with representation
(αξ\ξi

,Aξ\ξi
, d + 1− |ξi|)
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Bivariate Phase-Type Distribution

A =

 A0 B1 B2
0 A1 0
0 0 A2

 ,

where, Ai represents the subgenerator for states in ξi \ {∆}, and Bi rep-
resents the matrix of transition intensities from states in ξ0 to states in
ξi \ {∆}.

Example: Marshall-Olkin df has subgenerator

A =

 −λ12 − λ1 − λ2 λ1 λ2
0 −λ12 − λ2 0
0 0 −λ12 − λ1


F̄ (x, y) = exp {−λ1x− λ2y − λ12 max(x, y)}
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Multivariate Maxima/Minima

Let X(1) = (X(1)
1 , . . . , X

(1)
p ), X(2) = (X(2)

1 , . . . , X
(2)
p ), . . . be iid ran-

dom vectors with common distribution F , and let U(n) be a random vector
with jth component

U
(n)
j = max(X(i)

j , i = 1, . . . n).

If there exist a(n), b(n) ∈ <p and U with df G such that

a(n)U(n) + b(n) w→ U,

then F ∈ MaxDA(G).
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Componentwise minima

Theorem 1 Let F be the distribution function of a bivariate PH distribution
with representation (α, A, ξ, ξ1, ξ2), and mi be the minimum number of
transitions required in order to enter ξi. Then the limiting distribution of the
componentwise minima is given by

• Case 1: m1 = m2 = m

Ḡ(x1, x2) = exp

{
−xm

1 − xm
2 + cmin

(
xm
1

c1
,
xm
2

c2

)}
,

where ci = −αAmigie, i = 1,2, and c = −αAme.

• Case 2: m1 6= m2

Ḡ(x1, x2) = exp(−xm1 − xm2)
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Componentwise maxima

Theorem 2 Let F be the distribution function of a bivariate PH distribution
with representation (α, A, ξ, ξ1, ξ2). Then the limiting distribution of the
componentwise maxima has the following form:

G(x1, x2) =


e−e−x1e−e−x2 exp

{
e−x1

c1
αM1eA(x2+log c2−x1−log c1)η−1

g2e
}

,

if x1 + log c1 ≤ x2 + log c2

e−e−x1e−e−x2 exp
{

e−x2

c2
αM2eA(x1+log c1−x2−log c2)η−1

g1e
}

,

if x2 + log c2 ≤ x1 + log c1

if η1 = η2 = η and k1 = k2 = k, where ci = αMie > 0 for i = 1,2.

For any other case we have independence, and

G(x1, x2) = exp (−e−x1) exp (−e−x2).
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Pickands’ representation

In the bivariate case, if F ∈ MaxDA(G)

G(x, y) = exp

{
log(G1(x)G2(y))A

(
logG1(x)

log(G1(x)G2(y))

)}
,

where A is the Pickands’ representation function, which is a convex func-
tion on [0,1] such that max(t,1− t) ≤ A(t) ≤ 1.

A(t) =


1− 1−t

c2
αM2e

A1
η log

c1
c2

1−t
t g1e, if 0 ≤ t ≤ c1

c1+c2

1− t
c1

αM1e
A1

η log
c2
c1

t
1−tg1e, if c1

c1+c2
≤ t ≤ 1

.
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Example 1

α = (1,0,0), A =

 −a p q
0 −b 0
0 0 −c

 , a < min(b, c), p + q ≤ a,

A(t) =


1− t +

(
b−a

(c−a)(b+p−a)

)1− c

aq(c + q − a)−
c

at
c

a(1− t)1− c

a , 0 ≤ t ≤ c1

c1+c2

t +
(

c−a
(b−a)(q+c−a)

)1− b

ap(p + b− a)−
b

at1−
b

a(1− t)
b

a , c1

c1+c2
≤ t ≤ 1

.

If p = q = 0, then A(t) = max(t,1− t)
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Example 1 (a)

0 0.2 0.4 0.6 0.8 1
t

0.5

0.6

0.7

0.8

0.9

1
A

(a, b, c, p, q) = (2,3,3,0,0)→ solid line
(a, b, c, p, q) = (2,3,3,1,1)→ long-dashed line
(a, b, c, p, q) = (2,2.1,2.1,1,1)→ short-dashed line
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Example 1 (b)

0.2 0.4 0.6 0.8 1
t

0.6

0.7

0.8

0.9

1
A

(a, b, c, p, q) = (2,2.1,3,1,1)→ solid line
(a, b, c, p, q) = (2,3,2.5,0.1,1)→ long-dashed line
(a, b, c, p, q) = (2,3,3,1,0.1)→ short-dashed line
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Example 2

α = (p,1− p,0,0), 0 ≤ p ≤ 1,

A =


−5 0 1 2
0 −5 2 0
0 0 −7 0
0 0 0 −6

 ,

A(t) =


1− t + 2

4

5p(1 + 2p)−
6

5(4− p)
1

5t
6

5(1− t)−
1

5 , 0 ≤ t ≤ 2+4p
6+3p

t + 2
2

5(2− p)(4− p)−
7

5(1 + 2p)
2

5t−
2

5(1− t)
7

5 , 2+4p
6+3p

≤ t ≤ 1
.

17



Example 2 (cont’d)

0.2 0.4 0.6 0.8 1
t

0.6

0.7

0.8

0.9

1
A

p = 0→ solid line
p = 0.5→ long-dashed line
p = 1→ short-dashed line
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Conclusions

• for bivariate maxima, a flexible Pickands’ representation is obtained

• for minima, the bivariate exponential Marshall-Olkin df arises in the
limit

• simpler to see in the bivariate case, but our results can be extended to
higher dimensions
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