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Introduction to Statistical Inverse Problems

Statistical inverse problems involve ’backwards problems’
where we observe data drawn from some probability
distribution, for some unknown parameter.

Most problems that are interesting are ’ill-posed’, which is
when the inverse operator is unbounded — for example, if the
operator is compact.

Wide ranging area of research - many areas of application,
including medical imaging, geophysical applications,
automatic image recognition,. . .

Primary intended application of this research is medical
imaging problems, for example, CT scan technology.
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Background

SE (2) is the semi-direct product of R2 and SO(2) (the special
orthonormal group on 2 dimensions)

Can be considered a subgroup of the 3× 3 matrices

Group elements are g = (Rθ, r) with Rθ ∈ SO(2) and r ∈ R2

given by

g = (Rθ, r) =

cos θ − sin θ r1
sin θ cos θ r2
0 0 1


Group operation is matrix multiplication, this group is
non-compact and non-commutative
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Introduction to Fourier Analysis

In order to do Fourier analysis we need an operator called an
irreducible unitary representation.

Denote the IUR by U(g , p) where g ∈ SE (2) and p ∈ R+ is
an index.

Represent the operator by an infinite dimensional matrix with
matrix elements umn(g , p).

Will not distinguish between the operator and the infinite
dimensional matrix.
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Fourier Transform

The Fourier transform of a rapidly decreasing function
f ∈ L2(SE (2)) where g ∈ SE (2) , p ∈ R+ and its inverse
transform are defined as

F(f ) ≡ f̂ (p) = θp =

∫
SE(2)

f (g)U(g−1, p)d(g) (1)

and

F−1(f̂ ) ≡ f (g) =

∫ ∞

0
tr

(
f̂ (p)U(g , p)

)
pdp. (2)
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Helpful to look at the matrix elements of the Fourier
transform,

f̂mn(p) = 〈e imψ, f̂ (p)e inψ〉 =

∫
SE(2)

f (g)umn(g
−1, p)d(g),

(3)

and the inversion in terms of matrix elements,

f (g) =
∑

n,m∈Z

∫ ∞

0
f̂mn(p)unm(g , p)pdp. (4)

Recall that the Fourier transform is an infinite dimensional
matrix, and the inverse Fourier transform is a single value.
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Note that integration over SE (2) can be written as a
“double” integral over the subspaces, SO(2) and R2.∫

SE(2)
(·)d(g) =

∫
SO(2)

∫
R2

(·)dxd(φ). (5)
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Properties of the Fourier Transform

The adjoint property:

f̂ ∗mn(p) = f̂nm(p)

where f ∗(g) = f (g−1).

The convolution property, written symbolically as:

F(f1 ∗ f2) = F(f2)F(f1), (6)

and in terms of matrix elements as:

F(f1 ∗ f2)mn(p) =
∑
q

f̂2,mq(p)f̂1,qn(p)
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The SO(2) invariance property: If f (g) = f (r) ∈ L2(R2) then

f̂mn(p) = δm f̃n(−p) = δm

∫
S1

f̃ (−pκ)e inκd(κ)

= δm

∫
S1

∫
R2

f (r)e−i(−pκ·r)d(r)e inκd(κ)
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Noise Model

The noise model is formulated as follows∫
A

dY (g) =

∫
A

Λf (g)d(g) + ε

∫
A

dW (g) (7)

where g ∈ SE (2), f ∈ Θ(a,Q) ⊂ L2(SE (2)) , dW (g) is
Gaussian white noise in SE (2) and A ⊆ SE (2).

Prefer to work with the ’sequence space model’ given by

yp = Λpθp + εξp (8)

where p ∈ R+.
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The components of the sequence space model are:

yp =

∫
SE(2)

U(g , p)dY (g)

and

θp = f̂ (p) =

∫
SE(2)

Λf (g)U(g−1, p)d(g)

is the fourier transform over SE (2) of f (g). Note also that

ξp =

∫
SE(2)

U(g , p)dW (g).

— this is ’white noise’.
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Minimax Risk Estimation

The objective is to estimate the unknown θp, so we need an
estimator and a measure of error.

Let Hpyp be a linear estimator of θp such that
H = {Hp : p ∈ R+}.
Define the mean integrated squared risk as

R`
ε(H, θ) =

∫ ∞
0

E||θp − Hpyp||2ppdp

=

∫ ∞
0

(
tr

(
θt
p(I − HpΛp)

t(I − HpΛp)θp

)
+ ε2 tr(HpH

t
p)

)
pdp.
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Define the linear minimax risk as

r `ε(Θ) = inf
H

sup
θ∈Θ

R`
ε(H, θ). (9)

One goal of this research is to calculate the exact (i.e.
including the constant) linear minimax risk.
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Introduction to Radon Transform

The Radon transform forms the backbone of most medical
imaging techniques.

Transform two dimensional images with lines into a domain of
possible line parameters.

Want to use the Fourier transform on SE (2) and the
projection slice theorem to represent the Radon transform as a
convolution integral.

The Radon transform is given by

Rf (r , θ) =

∫
R

∫
R

f (x1, x2)δ(r−x1 cos θ−x2 sin θ)dx1dx2 (10)
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Radon/Convolution

We can write the Radon transform of a real valued function f
as a convolution integral over SE (2) as follows:

R (f ) ≡ Rf (κ, a1) = (∆ ∗ f ∗)(g) =

∫
SE(2)

∆(gh)f (h)d(h)

(11)
where f ∗(h) = f (h−1), ∆(h) = δ(b · e1), f (h) = f (b), and
κ = −A−1e1, a1 = a · e1.
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Discussion

Have a solution to the exact minimax risk calculation — still
need to prove convergence.

The next step is to begin programming to do a simulation
study — then application to real data sets.
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