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Dirichlet Process

What is Dirichlet Process?

@ The Dirichlet process is a way of putting a distribution on a
class of distributions.

@ It is most popular prior process in Non-parametric Bayesian
Inference.

@ Definition: Consider a space © and o-algebra B of a subset of
©. A random probability measure, G on (©, B), follows a
Dirichlet process DP(«, Gp), if for any finite measurable
partition, By,..., Bx of ©,

(G(Bl), ey G(Bk)) ~ Dirichlet(aGo(Bl), ceey aGo(Bk))

e G ~ DP(a, Gp), where « is a precision parameter, which
reflects the strength of belif in Gg, the prior expectation of G.
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Two Representations of Dirichlet Process
(1) Stick-breaking representation (Sethuraman, 1994)
o G =23 ,2,pdoy, , here O ~ Gy and

pr=Viand py =(1-Vi)(1-Va)...(1 = V1) Vi, k> 2,

where Vj are independent Beta(1, «) random variables.
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Dirichlet Process Mixture models

@ The Dirichlet Processes mixtures provide a fomal model to
estimate the distribution of random variable Y given a sample
{y1,¥2,...,yn} from an unknown distribution.

yil0i ~ F(0;)
0i1G ~ G
G~ DP(Oé, Go)

@ Escobar (1994, 1995) provided the fundamental developement
of the computational technique for the Dirichlet process
mixture model for Normal and inverse gamma conjugate
distributions.
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Dirichlet Process Mixture Models

How we do a density estimation?

@ Posterior predictive density of a future observation y,41 is
given by:

PUrlD) = [ PUral0)dP(8ID)

e Computation is possible by MCMC (Markov Chain Monte
Carlo) method.

@ Generating the posterior samples of 6, §(7) = (ng), ... ,95,'))
@ Summing using Mc;?nte Carlo,
P(ynt1|D) = %Erzl P(yn+l‘9(r))

How to obtain the Posterior samples of 07
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MDP Computations

e Conditional on #(—) = ={01,02,...,0i_1,0i11,...,0,}, 0 has
the following mixing distribution:

7(0i16C7, y) o< qiogo(6:)f (vil6i) + Y qijd;-
J#i

@ The mixing weights are:

dio @ / F(vil6)go(6:)d0: and a; = F(yil6)).

@ The Gibbs sampling steps will be as follows:

Step 1. Choose a starting value for 6.

Step 2. Sample an element of # sequentially by drawing from the
distribution. (61]0(-1),y) then (62/6(=2),y) and so on up to
(a0, ).

Step 3. Return step 2 until it converges.



Part |: Bayesian Semi-parametric Logistic regression
00000Oe

Introduction to Dirichlet Process

Bayesian Curve Fitting using Multivariate Normal
Mixtures




Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture




Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996



Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

@ Main idea: instead of modeling the random function g, the
nonparametric regression problem can be reduced to a density
estimation problem,



Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996
@ Main idea: instead of modeling the random function g, the
nonparametric regression problem can be reduced to a density

estimation problem,
if we consider the joint distribution (x;, y;) ~ F, and then

obtaining gr(x) = EF(y|x).



Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996
@ Main idea: instead of modeling the random function g, the
nonparametric regression problem can be reduced to a density

estimation problem,
if we consider the joint distribution (x;, y;) ~ F, and then

obtaining gr(x) = EF(y|x).
@ Model Structure



Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

@ Main idea: instead of modeling the random function g, the
nonparametric regression problem can be reduced to a density

estimation problem,
if we consider the joint distribution (x;, y;) ~ F, and then

obtaining gr(x) = EF(y|x).
@ Model Structure

zZi = (y,-,x,'l, ce ,X,'p) ~ N(Hiazi)
0; = (Miazi) ~G
G ~ DP(OC, GO)



Part |: Bayesian Semi-parametric Logistic regression
®00

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

@ Main idea: instead of modeling the random function g, the
nonparametric regression problem can be reduced to a density
estimation problem,
if we consider the joint distribution (x;, y;) ~ F, and then

obtaining gr(x) = EF(y|x).
@ Model Structure

zZi = (y,-,x,'l, ce ,X,'p) ~ N(Hiazi)
0; = (Miazi) ~G
G ~ DP(OC, GO)

@ Also, additional level of hierarchy was added on parameter «
and Gy.
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Bayesian curve fitting

Regression function Estimation

Suppose z = (¥n+1, Xn+1), and the goal is to estimate the the
regression function E(y|x).

X

p(2]0) = / 210)dGo (0 nif (2167)

J=1
Here, 0* = (67, ..., 6%) are distinct values and nj is for the number

of occurrences 0; = 0}‘.

@ Therefore, conditioning on x implies
k
plylx, 0%) = wopo(y|x, 0%) + > wi(x)fi(ylx, 67),
where w;(x) are functions of the marginal densities of x.
@ Take an expectation, then E(y|x,0) = Zf:o w;(x)1i(x).
,where [;(x) is the mean of jth component for y given x.
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The model

@ Let the response variable y be a Bernoulli random variable,
and assume a continuous covariate x.

yilxi ~ Bernoulli( H(Bo; + B1ix:))
Xi ~ N, 75"
0i = (Bois Buis bixis Txi) ~ G
G ~ D(Go, @)

where H(u) = 7(1f;(xp;)((u2u))'
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Specification of Parameters

Specification of prior mean Gy

( Bo ) ~ N (( Ko ) ,Z) here, ¥ = [ Uéo pﬂagoaﬁl
B M1 PBIBTB 95

/Lx|7—x ~ N(NOaTx_IVO)

Ty ~ Gamma(g, g)



Part |: Bayesian Semi-parametric Logistic regression
0O®0000000

Bayesian Semi-parametric Logistic Regression

Specification of Hyper-parameters




Part |: Bayesian Semi-parametric Logistic regression
0O®0000000

Bayesian Semi-parametric Logistic Regression

Specification of Hyper-parameters

Add one more hierarchy to the model:



Part |: Bayesian Semi-parametric Logistic regression
0O®0000000

Bayesian Semi-parametric Logistic Regression

Specification of Hyper-parameters

Add one more hierarchy to the model:

* 2
(o )~ (i )a) perea=[ 20, 77
Hpy M, pPO202 a5



Part |: Bayesian Semi-parametric Logistic regression
0O®0000000

Bayesian Semi-parametric Logistic Regression

Specification of Hyper-parameters

Add one more hierarchy to the model:

* 2
(o )~ (i )a) perea=[ 20, 77
Hpy M, pPO202 a5

Y1~ W(b,(bB)™)



Part |: Bayesian Semi-parametric Logistic regression
0O®0000000

Bayesian Semi-parametric Logistic Regression

Specification of Hyper-parameters

Add one more hierarchy to the model:

* 2
(o )~ (i )a) perea=[ 20, 77
Hpy M, pPO202 a5

Y1~ W(b,(bB)™)

Ho ~ N(mv V)



Part |: Bayesian Semi-parametric Logistic regression
0O®0000000

Bayesian Semi-parametric Logistic Regression

Specification of Hyper-parameters

Add one more hierarchy to the model:

* 2
(i )= ) ) o= [, 77
H6 Hp, pO202 05

Y1~ W(b,(bB)™)

Ho ~ N(mv V)

w W

22 )

Here W is a Wishart distribution with degree of freedom b and
scale matrix B.

-1
vy - ~ Gamma(
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Bayesian Semi-parametric Logistic Regression

Conditional distributions of primary Parameters and
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Conditional distributions of primary Parameters
° (TX,-‘DhMO, VO) ~ Gamma(%v %
° (,UJX,"TXN D;, 1o, VO) ~ N(/JJS’T;I(VOV%;[))

Xji— 2 * VO X;
© Here a" = (a+1), b" = (b+ ((1+’38 ), and pg = %

° HOWGVGI’, (ﬁdﬁl? Da K35 K3y 5 Z) X f(ﬁO|ﬂ1> HBys KBy s Z)f(D),
and respectively,

(ﬁl‘ﬁOa D7 Ko 3y s z) X f(ﬂl|ﬁ07 Kigs K3y s Z)f(D)
do not have mathematically explicit posterior distributions.
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Conditional distributions of Hyper-Parameters
B=(6o,51)", g = (1o, 11p,) " then
o (uglB,x,A) ~ N(a*, A"), B
here A* = A~1 + nX 1, a* = A*(A~lpug + nX~1p), and
3 (2P0 2BiNT
B= (=2 ==)".
° (Z_1|ﬁ,,ug) ~ W(b+ n,B*),
where B* = (bB + 32(8 — 115)(8 — n) 7).
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Conditional distributions of primary Parameters and
Hyper-parameters

Conditional distributions of Hyper-Parameters
= (ﬁOvﬁl)Tv g = (Mﬁonuﬁl)T then
b (U,@|B7Z7A) ~ N(a*aA*)v _
here A* = A~1 + nX 1, a* = A*(A~lpug + nX~1p), and
B= (52 52T
o (X7YYB,ug) ~ W(b+ n,B*),
where B* = (bB + >2(8 — p1p)(8 — up) ).
o (M0|V0a,uXa7-X)m7 V) ~ N(z:mn*v V*)'
* o i=1 TxHx — |4 * . _tvo
where m* = (1—t)m+t St (V+EV7O)' V=t
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Conditional distributions of Hyper-Parameters
B=(6o,51)", g = (1o, 11p,) " then
° (uslB,X,A) ~ N(a", A"), )
here A* = A~1 + nX 1, a* = A*(A~lpug + nX~1p), and
B= (52 52T
o (X7YYB,ug) ~ W(b+ n,B*),
where B* = (bB + 32(8 — 115)(8 — n) 7).
o (M0|V0a,uXa7-X)m7 V) ~ N(z:mn*v V*)'
* _ i=1 TxHx — —
where m* = (1 —t)m+t St (V+ m ) Ve =<

° (vglmo,MX,TX, w, W) ~ G.;)mma((wjn)7 (W;LN) ,

where N =3 M
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Assume o ~ Gamma(ao, bp), then
o (Q‘D,B, x5 Tx, kﬂ?) ~ 7['1|_{30 + k, bp — |0g(77)}

+mol{ao + k — 1, by — log(n)}
here,
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Assume o ~ Gamma(ao, bp), then
Q (a|D, B, pix, T, kym) ~ m1l{ao + k, by — log(1)}
+mol{ao + k — 1, by — log(n)}
here,
T = (a0 +k—1) m=1—-1
' a0+ k— 1+ n(bo —log(n))” '
@ (1D, 3, ux7x, k, ) ~ Beta(a + 1, n)
Here, k is the number of distinct components.
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Reall from the Dirichlet Mixture Models:

n

(0:107", Dy) ~ qoi Gi(6|D;) + Z qij06;(0:)
=Ty

Calculating Mixing weights:
Gio o< a [ £(D;]67)dGo(0;)
= a [ f(yilxi, 0:)f (xi|0:)dGo(67)

o0

T ( _exe(Bo+Bix) 1 1—yi
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Computation of mixing weights

Reall from the Dirichlet Mixture Models:

n

(0:107", Dy) ~ qoi Gi(6|D;) + Z qij06;(0:)
=Ty

Calculating Mixing weights:
Gio o< a [ £(D;]67)dGo(0;)
= a [ f(yilxi, 0:)f (xi|0:)dGo(67)

o0

T ( _exe(Bo+Bix) 1 1—yi
- i‘o {o <1+eF>)(p ,%0+1ﬁ1x,)> <1+eXP(5O+,31X,-)) dF(BOaﬂl)

[ (Xl s, T F (e 70 ) F (7 ) d e d e

—00 0
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Complete Gibbs Sampling Schemes

@ Drawing a new 6;, i=1,...,n from the Dirichlet process.
Either it takes old value such as ;,j # i or generates new
value from the posterior of Gy depending on the mixing
weight qo; and gji.

Note that the posterior samples for Gy and [3; are obtained by
ARS (Adaptive Rejection Sampling).

@ Remixing step: Drawing a new ij‘,j =1,...,k, from its
conditional distribution conditioned by the known number of
clusters and the set of indices which maps the original data
into k distinct groups or clusters.

© Drawing new hyperparameters based on the latest parameter
0*.

© Drawing a Dirichlet process parameter [«r|0*] by first sampling
[n| k] and then [a|n k]| where k is the number of distinct
values in 6*.
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Logistic regression function estimation

Under the assumed structure, P(D|0*) = P(x|0*)P(y|x, 6*).

k
P(y|x 6*)= Wo(x)/P(y|x 0*)dGo + Y Wi(x)Pi(ylx 0%)
j=1

[ f(x]6*)dGo
JF(x[0%)dGo+321_y nif(x]6*)

Here, Wy(x) =
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Logistic regression function estimation

Under the assumed structure, P(D|0*) = P(x|0*)P(y|x, 6*).

k
P(yIx 67) = Wo(x) / Plylx 0%)dGo + 3" Wi(x)Pi(ylx %)

j=1
_ J F(x16%)dGo

Here, Wo(x) = 1059 d603, mcaio)

and Wj(x) = n;f (x107)

T a [ F(x]0%)dGo+30)y nif (x[6%)
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Logistic regression function estimation

Under the assumed structure, P(D|0*) = P(x|0*)P(y|x, 6*).

k
P(yIx 67) = Wo(x) / Plylx 0%)dGo + 3" Wi(x)Pi(ylx %)

j=1
_ J F(x16%)dGo

Here, Wo(x) = 1059 d603, mcaio)

and Wj(x) = n;f (x107)

T [F(x|0*)dGo+> 5y nif (x|0%)
Therefore,

exp(Boj + B1x)
1+ eXp(ﬂoj 4F ﬂljx)

k
E(ylx 0°) =Y Wj(x)
j=0
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exp(—0.4(x — 3)%2 + 3)

= , n=100
1+ exp(—0.4(x — 3)2 +3) "




Part |: Bayesian Semi-parametric Logistic regression
90000000000

Simulated examples

Example 1.

_ exp(—0.4(x — 3)? +3)
1+ exp(—0.4(x —3)2+3)’

n=100
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_ _ exp(0.24-0.01x) exp(0.242x)
(2)25(()5’ =1|x) = 1+e,>)(p(0.2+0.01x)l(x <0)+ 1+eF>)(p(O.2+2X)I(X > 0),
n—
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The performance of our method

@ Our method seems to converge to the target distribution very
quickly.
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(3) Ply = 1lx) = (2o 25208 I (x < 0)+

xp(1.5—2(x—2)2
1;‘)’((')(1'5_(2()(_)2))2) I(x > 0), n=200
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Xp(—o—U.4(X 2
(3) Ply = 1lx) = (2o 25208 I (x < 0)+

xp(1.5—2(x—2)2
1;‘)’((')(1'5_(2()(_)2))2) I(x > 0), n=200
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clusters and it gives less smoother smoothing.

e 7: The bigger value of 7 gives less smoothing (or more wiggly
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@ We are going to illustrate how the different choice of priors for
7 affects the amount of smoothing of the estimated curve
with the following function:
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Simulations

Parameters related to the amount of smoothing
@ «: As « values increases Dirichlet process generates more
clusters and it gives less smoother smoothing.

e 7: The bigger value of 7 gives less smoothing (or more wiggly
curve) same as the smaller window size in Kernel Smoothing.

@ We are going to illustrate how the different choice of priors for
7 affects the amount of smoothing of the estimated curve
with the following function:

_ _ exp(exp(—2(x+2.5)%+2)+exp(—(x—2.5)?/8)—2)
Ply = 1x) = 1—T-e':<:(e':<p(—2(X+2‘5)2+2)—T-ep>)<p(—(x—2.5)2/8)—2)
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The non-smoking groups of mothers
Priors: 7 ~ Gamma(10,400) and o ~ Gamma(50, 1).
We did the transformation of X: X - mean( X), n = 115.
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The Low birth Weight Data example

The smoking groups of mothers
Priors: 7 ~ Gamma(10,800) and o ~ Gamma(10,1).
We did the transformation of X: X - mean(X), n = 74.
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The model structure for Poisson:
y,"X,' ~ POI'()\,'), where )\,‘ = exp(ﬂo,- + ﬂl,'X,')
Xj ~ N(,Uxiﬂ');l)

0i = (Boi, i, kixis Txi) ~ G
G~ D(Go,Oé)
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Bayesian Semi-parametric Poisson Regression

Bayesian semi-parametric Poisson regression

The model structure for Poisson:
y,"X,' ~ POI'()\,'), where )\,‘ = exp(ﬂo,- + ﬁl,'X,')

i~ Mo, 71
0i = (Boi, i, kixis Txi) ~ G
G~ D(Go,Oé)

The specification of Gg and hyper-parameters are same as the
Logistic regression case
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The mixing weights

The mixing weights are calculated as:
gio X Oé/ f(Dil0;)dGo(6)

= a/f(y;|X,',Hi)f(Xi|9i)dG0(9i)

. 7 7 exp(—exp(Bo + B1xi))(exp(Bo + B1xi))” dF (o, 1)

yi!

—00 —00

/ /0 f(Xi|,“XaTx)f(,ux|7-x)f(7'x)d7'xdﬂx
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The mixing weights are calculated as:
dio X a/f(D,]&,)dGo(G,)
_ a/f(y,-|x,-,9;)f(x,-|9,-)dGo(9,-)

N 7 7 exp(—exp(fo + B1xi))(exp(Bo + F1xi))”

Y dF (fo, )

—00 —00

/ /0 f(Xi|,“XaTx)f(,ux|7-x)f(7'x)d7'xdﬂx

@ For the first part of integration, again Monte Carlo method is
applied.
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dio X a/f(D,]&,)dGo(G,)
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o gjj < f(D;|0;) = f(yilxi 0;)f(xi|0;) are easily evaluated.
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Bayesian Semi-parametric Poisson Regression

The mixing weights

The mixing weights are calculated as:
dio X a/f(D,]&,)dGo(G,)
_ a/f(y,-|x,-,9;)f(x,-|9,-)dGo(9,-)

[T exp(—exp(Bo + B1x))(exp(fo + f1xi))”

—00 —00

/ /0 f(Xi|,“XaTx)f(,ux|7-x)f(7'x)d7'xdﬂx

@ For the first part of integration, again Monte Carlo method is
applied.

o gjj < f(D;|0;) = f(yilxi 0;)f(xi|0;) are easily evaluated.

@ The posterior samples of (g, 31) are again generated by ARS.
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(4) E(Y|X =x) =X =exp(—0.5(x +2)% + 1)I(x < 0)+
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Benefit of our method
o It is an effective way of estimating the true Logistic and
Poisson regression functions, especially when the functions are
spatially heterogenous.
@ It is a new way of doing semi-parametric regressions with
Bayesian perspective
@ It is conceptually easy and provides easy-to-implement
simulation environment.
@ We can directly obtain the distributions of the primary
parameters of interests
Concerns:
@ How sensitive our method to the choice of priors?
@ How good approximation of our Dirichlet mixing weight, qo,
which requires a numerical integration for each iteration?
@ How heavy is the cost of computing to implement the
method?
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Future work

@ The multivariate extension of our work should be studied
further.

@ This method can also be applied to estimate the hazard
function in Survival Analysis.

How is it applied to survival analysis?

o Let y = (y1,y2,.-.,¥n) be a survival time, and each having
an exponential distribution with parameter A;.

@ Let 6 = (01,02,...,0,)" be a censoring indicator, where §; = 0
if y; is right censored and §; = 1 if y; is a true failure time.



Part II: Bayesian Semi-parametric Poisson Regression
coeo

Discussion

Survival Analysis




Part II: Bayesian Semi-parametric Poisson Regression
coeo

Discussion

Survival Analysis

@ Our model can be written as:
yilxi ~ Exp(X;), where X\; = Bo; + [1ix
xi ~ N(pxi, T3 )
i = (Bois Buis tixi» Txi) ~ G
G ~ D(Go, )



Part II: Bayesian Semi-parametric Poisson Regression
coeo

Discussion

Survival Analysis

@ Our model can be written as:
yilxi ~ Exp(X;), where X\; = Bo; + [1ix
xi ~ N(pxi, T3 )
i = (Bois Buis tixi» Txi) ~ G
G ~ D(Go, )

The specification of Gg and hyper-parameters are same as
Logistic and Poisson case.



Part II: Bayesian Semi-parametric Poisson Regression
coeo

Discussion

Survival Analysis

@ Our model can be written as:
yilxi ~ Exp(X;), where X\; = Bo; + [1ix
xi ~ N(pxi, T3 )
i = (Bois Buis tixi» Txi) ~ G
G ~ D(Go, )

The specification of Gg and hyper-parameters are same as
Logistic and Poisson case.
@ The likelihood function with the censoring information is:



Part II: Bayesian Semi-parametric Poisson Regression
coeo

Discussion

Survival Analysis

@ Our model can be written as:
yilxi ~ Exp(X;), where X\ = Bo; + B1ix;
Xj ~ N(MXhT;l)
i = (Boi, Buis tixi, Txi) ~ G
G ~ D(Go, @)

The specification of Gg and hyper-parameters are same as

Logistic and Poisson case.
@ The likelihood function with the censoring information is:

L(5|D) ny,\A S(yi|A) =)

= eXP{Z 0i(Boi + Brixi) } exp{— Y _ yi exp(Boi + Buixi)}

i=1 i=1



Part II: Bayesian Semi-parametric Poisson Regression
oooe

Discussion

Survival Analysis




Part II: Bayesian Semi-parametric Poisson Regression
oooe

Discussion

Survival Analysis

@ After we are able to obtain all mixing weights and posterior
samples for the parameters, then we can estimate the hazard
function as:



Part II: Bayesian Semi-parametric Poisson Regression
oooe

Discussion

Survival Analysis

@ After we are able to obtain all mixing weights and posterior
samples for the parameters, then we can estimate the hazard
function as:

k
h(x) = E(y|x 6%) =Y Wj(x)(Boj + B1%)
Jj=0



Part II: Bayesian Semi-parametric Poisson Regression
oooe

Discussion

Survival Analysis

@ After we are able to obtain all mixing weights and posterior
samples for the parameters, then we can estimate the hazard
function as:

k
h(x) = E(y|x 6%) =Y Wj(x)(Boj + B1%)
Jj=0

@ It would be deduced to a few mixtures of linear functions
weighted by functions of marginal distributions of X.



Part II: Bayesian Semi-parametric Poisson Regression
oooe

Discussion

Survival Analysis

@ After we are able to obtain all mixing weights and posterior
samples for the parameters, then we can estimate the hazard
function as:

k
h(x) = E(y|x 6%) =Y Wj(x)(Boj + B1%)
Jj=0

@ It would be deduced to a few mixtures of linear functions
weighted by functions of marginal distributions of X.

@ Now we have a hazard function which is a mixtures of linear
functions, and it would provide to fitting the wide range of
spatially heterogenous hazard functions.
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