Bayesian Semi-parametric Logistic and Poisson Regression

Sohee Kang

Department of Public Health Sciences (Biostatistics) University of Toronto

May 11, 2006

- 1 Part I: Bayesian Semi-parametric Logistic regression
 - Introduction to Dirichlet Process
 - Bayesian curve fitting
 - Bayesian Semi-parametric Logistic Regression
 - Simulated examples
- 2 Part II: Bayesian Semi-parametric Poisson Regression
 - Bayesian Semi-parametric Poisson Regression
 - Simulation study
 - Discussion

- 1 Part I: Bayesian Semi-parametric Logistic regression
 - Introduction to Dirichlet Process
 - Bayesian curve fitting
 - Bayesian Semi-parametric Logistic Regression
 - Simulated examples
- 2 Part II: Bayesian Semi-parametric Poisson Regression
 - Bayesian Semi-parametric Poisson Regression
 - Simulation study
 - Discussion

Dirichlet Process

What is Dirichlet Process?

- The Dirichlet process is a way of putting a distribution on a class of distributions.
- It is most popular prior process in Non-parametric Bayesian Inference.
- Definition: Consider a space Θ and σ -algebra \mathcal{B} of a subset of Θ . A random probability measure, G on (Θ, \mathcal{B}) , follows a Dirichlet process $DP(\alpha, G_0)$, if for any finite measurable partition, B_1, \ldots, B_k of Θ ,

$$(G(B_1),\ldots,G(B_k)) \sim Dirichlet(\alpha G_0(B_1),\ldots,\alpha G_0(B_k))$$

Dirichlet Process

What is Dirichlet Process?

- The Dirichlet process is a way of putting a distribution on a class of distributions.
- It is most popular prior process in Non-parametric Bayesian Inference.
- Definition: Consider a space Θ and σ -algebra \mathcal{B} of a subset of Θ . A random probability measure, G on (Θ, \mathcal{B}) , follows a Dirichlet process $DP(\alpha, G_0)$, if for any finite measurable partition, B_1, \ldots, B_k of Θ ,

$$(G(B_1),\ldots,G(B_k)) \sim Dirichlet(\alpha G_0(B_1),\ldots,\alpha G_0(B_k))$$

Dirichlet Process

What is Dirichlet Process?

- The Dirichlet process is a way of putting a distribution on a class of distributions.
- It is most popular prior process in Non-parametric Bayesian Inference.
- Definition: Consider a space Θ and σ -algebra \mathcal{B} of a subset of Θ . A random probability measure, G on (Θ, \mathcal{B}) , follows a Dirichlet process $DP(\alpha, G_0)$, if for any finite measurable partition, B_1, \ldots, B_k of Θ ,

$$(G(B_1),\ldots,G(B_k)) \sim Dirichlet(\alpha G_0(B_1),\ldots,\alpha G_0(B_k))$$

Dirichlet Process

What is Dirichlet Process?

- The Dirichlet process is a way of putting a distribution on a class of distributions.
- It is most popular prior process in Non-parametric Bayesian Inference.
- Definition: Consider a space Θ and σ -algebra \mathcal{B} of a subset of

$$(G(B_1), \ldots, G(B_k)) \sim Dirichlet(\alpha G_0(B_1), \ldots, \alpha G_0(B_k))$$

• $G \sim DP(\alpha, G_0)$, where α is a precision parameter, which

Dirichlet Process

What is Dirichlet Process?

- The Dirichlet process is a way of putting a distribution on a class of distributions.
- It is most popular prior process in Non-parametric Bayesian Inference.
- Definition: Consider a space Θ and σ -algebra \mathcal{B} of a subset of Θ . A random probability measure, G on (Θ, \mathcal{B}) , follows a Dirichlet process $DP(\alpha, G_0)$, if for any finite measurable partition, B_1, \ldots, B_k of Θ ,

$$(G(B_1),\ldots,G(B_k)) \sim Dirichlet(\alpha G_0(B_1),\ldots,\alpha G_0(B_k))$$

Dirichlet Process

What is Dirichlet Process?

- The Dirichlet process is a way of putting a distribution on a class of distributions.
- It is most popular prior process in Non-parametric Bayesian Inference.
- Definition: Consider a space Θ and σ -algebra \mathcal{B} of a subset of Θ . A random probability measure, G on (Θ, \mathcal{B}) , follows a Dirichlet process $DP(\alpha, G_0)$, if for any finite measurable partition, B_1, \ldots, B_k of Θ ,

$$(G(B_1),\ldots,G(B_k)) \sim Dirichlet(\alpha G_0(B_1),\ldots,\alpha G_0(B_k))$$

Introduction to Dirichlet Process

Dirichlet Process Representation

Two Representations of Dirichlet Process

- (1) Stick-breaking representation (Sethuraman, 1994)
 - $G = \sum_{k=1}^{\infty} p_k \delta_{\theta_k}$, here $\theta_k \sim G_0$ and

$$p_1 = V_1$$
 and $p_k = (1 - V_1)(1 - V_2) \dots (1 - V_{k-1})V_k, \ k \ge 2$

where V_k are independent $Beta(1, \alpha)$ random variables

Dirichlet Process Representation

Two Representations of Dirichlet Process

(1) Stick-breaking representation (Sethuraman, 1994)

•
$$G = \sum_{k=1}^{\infty} p_k \delta_{\theta_k}$$
 , here $\theta_k \sim G_0$ and

$$p_1 = V_1$$
 and $p_k = (1 - V_1)(1 - V_2) \dots (1 - V_{k-1})V_k, \ k \ge 2$

where V_k are independent $Beta(1, \alpha)$ random variables

Dirichlet Process Representation

Two Representations of Dirichlet Process

- (1) Stick-breaking representation (Sethuraman, 1994)
 - $G = \sum_{k=1}^{\infty} p_k \delta_{\theta_k}$, here $\theta_k \sim G_0$ and $p_1 = V_1$ and $p_k = (1 V_1)(1 V_2) \dots (1 V_{k-1})V_k$, $k \ge 2$ where V_k are independent $Beta(1, \alpha)$ random variables.

Dirichlet Process Representation

Two Representations of Dirichlet Process

- (1) Stick-breaking representation (Sethuraman, 1994)
 - $G = \sum_{k=1}^{\infty} p_k \delta_{\theta_k}$, here $\theta_k \sim G_0$ and $p_1 = V_1$ and $p_k = (1 V_1)(1 V_2) \dots (1 V_{k-1})V_k$, $k \ge 2$, where V_k are independent $Beta(1, \alpha)$ random variables.

Dirichlet Process Representation

Two Representations of Dirichlet Process

- (1) Stick-breaking representation (Sethuraman, 1994)
 - $G = \sum_{k=1}^{\infty} p_k \delta_{\theta_k}$, here $\theta_k \sim G_0$ and $p_1 = V_1$ and $p_k = (1 V_1)(1 V_2) \dots (1 V_{k-1})V_k$, $k \ge 2$, where V_k are independent $Beta(1, \alpha)$ random variables.



- (2) Polya urn representation (Blackwell and MacQueen, 1973)
 - $X_1 \sim G_0$ and
 - $X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}G_0 + \frac{1}{\alpha+n}\sum_{i=1}^n \delta_{X_i}$.

(2) Polya urn representation (Blackwell and MacQueen, 1973)

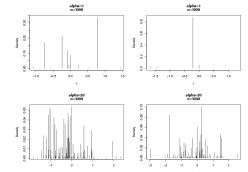
•
$$X_1 \sim G_0$$
 and

•
$$X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}G_0 + \frac{1}{\alpha+n}\sum_{i=1}^n \delta_{X_i}$$
.

- (2) Polya urn representation (Blackwell and MacQueen, 1973)
 - $X_1 \sim G_0$ and
 - $X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}G_0 + \frac{1}{\alpha+n}\sum_{i=1}^n \delta_{X_i}$.

(2) Polya urn representation (Blackwell and MacQueen, 1973)

- $X_1 \sim G_0$ and
- $X_{n+1}|X_1, \ldots X_n \sim \frac{\alpha}{\alpha+n}G_0 + \frac{1}{\alpha+n}\sum_{i=1}^n \delta_{X_i}$.



Divisible Dusess Mistons and

Dirichlet Process Mixture models

• The Dirichlet Processes mixtures provide a fomal model to estimate the distribution of random variable Y given a sample $\{y_1, y_2, \ldots, y_n\}$ from an unknown distribution.

$$y_i | \theta_i \sim F(\theta_i)$$

 $\theta_i | G \sim G$
 $G \sim DP(\alpha, G_0)$

 Escobar (1994, 1995) provided the fundamental development of the computational technique for the Dirichlet process mixture model for Normal and inverse gamma conjugate distributions

Dirichlet Process Mixture models

• The Dirichlet Processes mixtures provide a formal model to estimate the distribution of random variable Y given a sample $\{y_1, y_2, \ldots, y_n\}$ from an unknown distribution.

$$y_i | \theta_i \sim F(\theta_i)$$

 $\theta_i | G \sim G$
 $G \sim DP(\alpha, G_0)$

 Escobar (1994, 1995) provided the fundamental development of the computational technique for the Dirichlet process mixture model for Normal and inverse gamma conjugate distributions

Dirichlet Process Mixture models

• The Dirichlet Processes mixtures provide a formal model to estimate the distribution of random variable Y given a sample $\{y_1, y_2, \ldots, y_n\}$ from an unknown distribution.

$$y_i | heta_i \sim F(heta_i)$$
 $heta_i | G \sim G$ $G \sim DP(lpha, G_0)$

 Escobar (1994, 1995) provided the fundamental development of the computational technique for the Dirichlet process mixture model for Normal and inverse gamma conjugate distributions

Dirichlet Process Mixture models

• The Dirichlet Processes mixtures provide a formal model to estimate the distribution of random variable Y given a sample $\{y_1, y_2, \ldots, y_n\}$ from an unknown distribution.

$$y_i | \theta_i \sim F(\theta_i)$$

 $\theta_i | G \sim G$
 $G \sim DP(\alpha, G_0)$

 Escobar (1994, 1995) provided the fundamental development of the computational technique for the Dirichlet process mixture model for Normal and inverse gamma conjugate distributions.

Dirichlet Process Mixture Models

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta) dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - ① Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - 2 Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

Dirichlet Process Mixture Models

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta) dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - ① Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - ② Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta) dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - ① Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - ② Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta)dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - ① Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - 2 Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta) dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - **①** Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - 2 Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta)$

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta)dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - ② Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta)dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - **1** Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

How we do a density estimation?

• Posterior predictive density of a future observation y_{n+1} is given by:

$$P(y_{n+1}|D) = \int P(y_{n+1}|\theta) dP(\theta|D)$$

- Computation is possible by MCMC (Markov Chain Monte Carlo) method.
 - **1** Generating the posterior samples of θ , $\theta^{(r)} = (\theta_1^{(r)}, \dots, \theta_n^{(r)})$
 - Summing using Monte Carlo, $\hat{P}(y_{n+1}|D) = \frac{1}{R} \sum_{r=1}^{R} P(y_{n+1}|\theta^{(r)})$

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(\theta_i|\theta^{(-i)},y) \propto q_{i0}g_0(\theta_i)f(y_i|\theta_i) + \sum_{i\neq i}q_{ij}\delta_{\theta_j}.$$

• The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i)g_0(heta_i)d heta_i$$
 and $q_{ij} = f(y_i| heta_j).$

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(\theta_i|\theta^{(-i)},y) \propto q_{i0}g_0(\theta_i)f(y_i|\theta_i) + \sum_{i\neq i}q_{ij}\delta_{\theta_j}.$$

• The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i) g_0(heta_i) d heta_i$$
 and $q_{ij} = f(y_i| heta_j).$

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(heta_i| heta^{(-i)},y) \propto q_{i0}g_0(heta_i)f(y_i| heta_i) + \sum_{j
eq i} q_{ij}\delta_{ heta_j}.$$

• The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i)g_0(heta_i)d heta_i$$
 and $q_{ij} = f(y_i| heta_j).$

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(heta_i| heta^{(-i)},y) \propto q_{i0}g_0(heta_i)f(y_i| heta_i) + \sum_{j
eq i} q_{ij}\delta_{ heta_j}.$$

The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i) g_0(heta_i) d heta_i$$
 and $q_{ij} = f(y_i| heta_j).$

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(heta_i| heta^{(-i)},y) \propto q_{i0}g_0(heta_i)f(y_i| heta_i) + \sum_{j
eq i} q_{ij}\delta_{ heta_j}.$$

The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i)g_0(heta_i)d heta_i$$
 and $q_{ij} = f(y_i| heta_j)$.

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(heta_i| heta^{(-i)},y) \propto q_{i0}g_0(heta_i)f(y_i| heta_i) + \sum_{j
eq i} q_{ij}\delta_{ heta_j}.$$

The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i)g_0(heta_i)d heta_i$$
 and $q_{ij} = f(y_i| heta_j)$.

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(heta_i| heta^{(-i)},y) \propto q_{i0}g_0(heta_i)f(y_i| heta_i) + \sum_{j
eq i} q_{ij}\delta_{ heta_j}.$$

• The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i) g_0(heta_i) d heta_i$$
 and $q_{ij} = f(y_i| heta_j)$.

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(\theta_i|\theta^{(-i)},y) \propto q_{i0}g_0(\theta_i)f(y_i|\theta_i) + \sum_{j\neq i}q_{ij}\delta_{\theta_j}.$$

• The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i) g_0(heta_i) d heta_i$$
 and $q_{ij} = f(y_i| heta_j)$.

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)}, y)$ then $(\theta_2|\theta^{(-2)}, y)$ and so on up to $(\theta_n|\theta^{(-n)}, v).$

MDP Computations

• Conditional on $\theta^{(-i)} = \{\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n\}, \ \theta_i$ has the following mixing distribution:

$$\pi(\theta_i|\theta^{(-i)},y) \propto q_{i0}g_0(\theta_i)f(y_i|\theta_i) + \sum_{j\neq i}q_{ij}\delta_{\theta_j}.$$

The mixing weights are:

$$q_{i0} \propto lpha \int f(y_i| heta_i) g_0(heta_i) d heta_i$$
 and $q_{ij} = f(y_i| heta_j)$.

- The Gibbs sampling steps will be as follows:
- Step 1. Choose a starting value for θ .
- Step 2. Sample an element of θ sequentially by drawing from the distribution. $(\theta_1|\theta^{(-1)},y)$ then $(\theta_2|\theta^{(-2)},y)$ and so on up to $(\theta_n|\theta^{(-n)},y)$.
- Step 3. Return step 2 until it converges.

Introduction to Dirichlet Process

Bayesian Curve Fitting using Multivariate Normal Mixtures

Bayesian curve fitting

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

- Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem, if we consider the joint distribution $(x_i, y_i) \sim F$, and then
- Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$

 $\theta_i = (\mu_i, \Sigma_i) \sim G$
 $G \sim DP(\alpha, G_0)$

ullet Also, additional level of hierarchy was added on parameter lpha and G_2

Outline

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

- Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem, if we consider the joint distribution $(x_i, y_i) \sim F$, and then
 - if we consider the joint distribution $(x_i, y_i) \sim F$, and then obtaining $g_F(x) = E_F(y|x)$.
- Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$

 $\theta_i = (\mu_i, \Sigma_i) \sim G$
 $G \sim DP(\alpha, G_0)$

ullet Also, additional level of hierarchy was added on parameter lpha and G_2

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

 Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem,

if we consider the joint distribution $(x_i, y_i) \sim F$, and then obtaining $g_F(x) = E_F(y|x)$.

Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$
$$\theta_i = (\mu_i, \Sigma_i) \sim G$$
$$G \sim DP(\alpha, G_0)$$

• Also, additional level of hierarchy was added on parameter α and G_0

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

- Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem, if we consider the joint distribution $(x_i, y_i) \sim F$, and then
 - obtaining $g_F(x) = E_F(y|x)$.
- Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$

 $\theta_i = (\mu_i, \Sigma_i) \sim G$
 $G \sim DP(\alpha, G_0)$

• Also, additional level of hierarchy was added on parameter α and G_0

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

- Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem, if we consider the joint distribution $(x_i, y_i) \sim F$, and then
 - obtaining $g_F(x) = E_F(y|x)$.
- Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$

 $\theta_i = (\mu_i, \Sigma_i) \sim G$
 $G \sim DP(\alpha, G_0)$

• Also, additional level of hierarchy was added on parameter α and G_0 .

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

- Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem, if we consider the joint distribution $(x_i, y_i) \sim F$, and then
 - obtaining $g_F(x) = E_F(y|x)$.
- Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$

 $\theta_i = (\mu_i, \Sigma_i) \sim G$
 $G \sim DP(\alpha, G_0)$

• Also, additional level of hierarchy was added on parameter α and G_0 .

Bayesian Curve Fitting using Multivariate Normal Mixture

Peter Muller, Alaattin Erkanli, and Mike West, Biometrika, 1996

- Main idea: instead of modeling the random function g, the nonparametric regression problem can be reduced to a density estimation problem, if we consider the joint distribution $(x_i, y_i) \sim F$, and then
 - obtaining $g_F(x) = E_F(y|x)$.
- Model Structure

$$z_i = (y_i, x_{i1}, \dots, x_{ip}) \sim N(\mu_i, \Sigma_i)$$

 $\theta_i = (\mu_i, \Sigma_i) \sim G$
 $G \sim DP(\alpha, G_0)$

• Also, additional level of hierarchy was added on parameter α and G_0 .

Regression function Estimation

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies
- Take an expectation, then $E(y|x,\theta) = \sum_{i=0}^k w_i(x)l_i(x)$.

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^{k} w_j(x)l_j(x)$, where $l_i(x)$ is the mean of jth component for y given x.

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^{k} w_j(x)l_j(x)$, where $l_i(x)$ is the mean of jth component for y given x

Bayesian curve fitting

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^{k} w_j(x) l_j(x)$, where $l_i(x)$ is the mean of jth component for y given x

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^{k} w_j(x)l_j(x)$, where $l_i(x)$ is the mean of jth component for y given x

Dayesian curve illling

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x.
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^{k} w_j(x)l_j(x)$, where $l_i(x)$ is the mean of jth component for y given x

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x.
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^{k} w_j(x)l_j(x)$, where $l_j(x)$ is the mean of jth component for y given x.

Regression function Estimation

Suppose $z = (y_{n+1}, x_{n+1})$, and the goal is to estimate the the regression function E(y|x).

$$p(z|\theta) = \frac{\alpha}{\alpha + n} \int f(z|\theta) dG_0(\theta) + \frac{1}{\alpha + n} \sum_{j=1}^k n_j f(z|\theta_j^*)$$

- Therefore, conditioning on x implies $p(y|x, \theta^*) = w_0 p_0(y|x, \theta^*) + \sum_{j=1}^k w_j(x) f_j(y|x, \theta^*)$, where $w_j(x)$ are functions of the marginal densities of x.
- Take an expectation, then $E(y|x,\theta) = \sum_{j=0}^k w_j(x)l_j(x)$, where $l_j(x)$ is the mean of jth component for y given x.

Bayesian Semi-parametric Logistic Regression

The model

$$y_{i}|x_{i} \sim Bernoulli(H(\beta_{0i} + \beta_{1i}x_{i}))$$

$$x_{i} \sim N(\mu_{xi}, \tau_{xi}^{-1})$$

$$\theta_{i} = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$$

$$G \sim D(G_{0}, \alpha)$$

where
$$H(u) = \frac{\exp(u)}{(1+\exp(-u))}$$

The model

$$y_{i}|x_{i} \sim Bernoulli(H(\beta_{0i} + \beta_{1i}x_{i}))$$

$$x_{i} \sim N(\mu_{xi}, \tau_{xi}^{-1})$$

$$\theta_{i} = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$$

$$G \sim D(G_{0}, \alpha)$$

where
$$H(u) = \frac{\exp(u)}{(1+\exp(-u))}$$

The model

• Let the response variable y be a Bernoulli random variable, and assume a continuous covariate x.

$$y_{i}|x_{i} \sim Bernoulli(H(\beta_{0i} + \beta_{1i}x_{i}))$$

$$x_{i} \sim N(\mu_{xi}, \tau_{xi}^{-1})$$

$$\theta_{i} = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$$

$$G \sim D(G_{0}, \alpha)$$

where
$$H(u) = \frac{\exp(u)}{(1 + \exp(-u))}$$
.

Part II: Bayesian Semi-parametric Poisson Regression

The model

$$y_i|x_i \sim Bernoulli(H(eta_{0i} + eta_{1i}x_i))$$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$ $heta_i = (eta_{0i}, eta_{1i}, \mu_{xi}, au_{xi}) \sim G$ $G \sim D(G_0, lpha)$

where
$$H(u) = \frac{\exp(u)}{(1+\exp(-u))}$$

The model

$$y_i|x_i \sim Bernoulli(H(eta_{0i} + eta_{1i}x_i))$$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$ $heta_i = (eta_{0i}, eta_{1i}, \mu_{xi}, au_{xi}) \sim G$ $G \sim D(G_0, lpha)$

where
$$H(u) = \frac{\exp(u)}{(1+\exp(-u))}$$
.

The model

$$y_i|x_i \sim Bernoulli(H(eta_{0i} + eta_{1i}x_i))$$
 $x_i \sim N(\mu_{xi}, au_{xi}^{-1})$ $heta_i = (eta_{0i}, eta_{1i}, \mu_{xi}, au_{xi}) \sim G$ $G \sim D(G_0, lpha)$

where
$$H(u) = \frac{\exp(u)}{(1+\exp(-u))}$$

The model

$$y_i|x_i \sim Bernoulli(H(eta_{0i} + eta_{1i}x_i))$$
 $x_i \sim N(\mu_{xi}, au_{xi}^{-1})$ $heta_i = (eta_{0i}, eta_{1i}, \mu_{xi}, au_{xi}) \sim G$ $G \sim D(G_0, lpha)$

where
$$H(u) = \frac{\exp(u)}{(1+\exp(-u))}$$
.

Specification of Parameters

Specification of prior mean G_0

U

$$\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \Sigma \end{pmatrix} \text{ here, } \Sigma = \begin{bmatrix} \sigma_{\beta_0}^2 & \rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1} \\ \rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1} & \sigma_{\beta_1}^2 \end{bmatrix}$$
$$\mu_x | \tau_x \sim N(\mu_0, \tau_x^{-1}v_0)$$

$$au_{\mathsf{x}} \sim \mathsf{Gamma}(\frac{\mathsf{a}}{2}, \frac{\mathsf{b}}{2})$$

Specification of Parameters

Specification of prior mean G_0

0

$$\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \Sigma \end{pmatrix} \text{ here, } \Sigma = \begin{bmatrix} \sigma_{\beta_0}^2 & \rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1} \\ \rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1} & \sigma_{\beta_1}^2 \end{bmatrix}$$

$$\mu_{\mathsf{X}}|\tau_{\mathsf{X}} \sim N(\mu_0, \tau_{\mathsf{X}}^{-1} v_0)$$

$$au_{\mathsf{x}} \sim \mathsf{Gamma}(\frac{\mathsf{a}}{2}, \frac{\mathsf{b}}{2})$$

Specification of Parameters

Specification of prior mean G_0

•

$$\left(\begin{array}{c}\beta_0\\\beta_1\end{array}\right) \sim \textit{N}\left(\left(\begin{array}{c}\mu_{\beta_0}\\\mu_{\beta_1}\end{array}\right), \Sigma\right) \text{ here, } \Sigma = \left[\begin{array}{cc}\sigma_{\beta_0}^2 & \rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1}\\\rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1} & \sigma_{\beta_1}^2\end{array}\right]$$

$$\mu_{\mathsf{X}}|\tau_{\mathsf{X}} \sim N(\mu_0, \tau_{\mathsf{X}}^{-1} v_0)$$

$$au_{\mathsf{x}} \sim \mathsf{Gamma}(\frac{\mathsf{a}}{2}, \frac{\mathsf{b}}{2})$$

Specification of Parameters

Specification of prior mean G_0

•

$$\left(\begin{array}{c}\beta_0\\\beta_1\end{array}\right) \sim \textit{N}\left(\left(\begin{array}{c}\mu_{\beta_0}\\\mu_{\beta_1}\end{array}\right), \Sigma\right) \text{ here, } \Sigma = \left[\begin{array}{cc}\sigma_{\beta_0}^2 & \rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1}\\\rho_{\beta}\sigma_{\beta_0}\sigma_{\beta_1} & \sigma_{\beta_1}^2\end{array}\right]$$

$$\mu_{\mathsf{x}}| au_{\mathsf{x}}\sim N(\mu_0, au_{\mathsf{x}}^{-1}v_0)$$

$$au_{\mathsf{x}} \sim \mathsf{Gamma}(\frac{\mathsf{a}}{2}, \frac{\mathsf{b}}{2})$$

Specification of Parameters

Specification of prior mean G_0

•

$$\left(\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right) \sim \textit{N} \left(\left(\begin{array}{c} \mu_{\beta_0} \\ \mu_{\beta_1} \end{array} \right), \Sigma \right) \text{ here, } \Sigma = \left[\begin{array}{cc} \sigma_{\beta_0}^2 & \rho_{\beta} \sigma_{\beta_0} \sigma_{\beta_1} \\ \rho_{\beta} \sigma_{\beta_0} \sigma_{\beta_1} & \sigma_{\beta_1}^2 \end{array} \right]$$

$$\mu_{\mathsf{x}} | \tau_{\mathsf{x}} \sim \textit{N}(\mu_0, \tau_{\mathsf{x}}^{-1} \mathsf{v}_0)$$

 $au_{x} \sim Gamma(\frac{a}{2}, \frac{b}{2})$

Specification of Hyper-parameters

Add one more hierarchy to the model:

$$\begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\beta_0}^* \\ \mu_{\beta_1}^* \end{pmatrix}, A \end{pmatrix}, \text{ here, } A = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_2 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$\mu_0 \sim N(m, V)$$

$$v_0^{-1} \sim \textit{Gamma}(\frac{w}{2}, \frac{W}{2}).$$

Here W is a Wishart distribution with degree of freedom b and scale matrix B

Specification of Hyper-parameters

Add one more hierarchy to the model:

$$\begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\beta_0}^* \\ \mu_{\beta_1}^* \end{pmatrix}, A \end{pmatrix}, \text{ here, } A = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_2 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$\sum_{k=0}^{-1} \sim W(h_k(kR)^{-1})$$

$$\mu_0 \sim N(m, V)$$

$$v_0^{-1} \sim Gamma(\frac{w}{2}, \frac{W}{2})$$

Here W is a Wishart distribution with degree of freedom b and scale matrix B.

Specification of Hyper-parameters

Add one more hierarchy to the model:

0

$$\left(\begin{array}{c} \mu_{\beta_0} \\ \mu_{\beta_1} \end{array}\right) \sim \textit{N}\left(\left(\begin{array}{c} \mu_{\beta_0}^* \\ \mu_{\beta_1}^* \end{array}\right), A\right), \ \ \text{here, } A = \left[\begin{array}{cc} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_2\sigma_2 & \sigma_2^2 \end{array}\right]$$

$$\Sigma^{-1} \sim W(b, (bB)^{-1})$$

$$\mu_0 \sim N(m, V)$$

$$v_0^{-1} \sim \textit{Gamma}(\frac{w}{2}, \frac{W}{2}).$$

Here W is a Wishart distribution with degree of freedom b and scale matrix B.

Specification of Hyper-parameters

Add one more hierarchy to the model:

0

$$\begin{pmatrix} \ \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \ \mu_{\beta_0}^* \\ \mu_{\beta_1}^* \end{pmatrix}, \textit{A} \right), \ \ \text{here, } \textit{A} = \begin{bmatrix} \ \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_2 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$\Sigma^{-1} \sim \textit{W}(\textit{b}, (\textit{bB})^{-1})$$

$$\mu_0 \sim N(m, V)$$

$$v_0^{-1} \sim \textit{Gamma}(rac{w}{2}, rac{W}{2}).$$

Here W is a Wishart distribution with degree of freedom b and scale matrix B.

Specification of Hyper-parameters

Add one more hierarchy to the model:

•

$$\begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{\beta_0}^* \\ \mu_{\beta_1}^* \end{pmatrix}, A \end{pmatrix}, \text{ here, } A = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_2 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$\Sigma^{-1} \sim W(b, (bB)^{-1})$$

$$\mu_0 \sim N(m, V)$$

$$v_0^{-1} \sim \textit{Gamma}(\frac{w}{2}, \frac{W}{2}).$$

Here W is a Wishart distribution with degree of freedom b and scale matrix B.

Specification of Hyper-parameters

Add one more hierarchy to the model:

•

$$\begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_{\beta_0}^* \\ \mu_{\beta_1}^* \end{pmatrix}, A \right), \text{ here, } A = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_2 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$\Sigma^{-1} \sim \mathcal{W}(b, (bB)^{-1})$$

$$\mu_0 \sim N(m, V)$$

$$v_0^{-1} \sim Gamma(\frac{w}{2}, \frac{W}{2}).$$

Here W is a Wishart distribution with degree of freedom b and scale matrix B.

- $(\tau_{x_i}|D_i,\mu_0,v_0) \sim Gamma(\frac{a^*}{2},\frac{b^*}{2})$
- $(\mu_{x_i}|\tau_{x_i}, D_i, \mu_0, v_0) \sim N(\mu_0^*, \tau_x^{-1} \frac{v_0}{(v_0+1)})$
- Here $a^*=(a+1)$, $b^*=(b+\frac{(x_i-\mu_0)^2}{(1+v_0)})$, and $\mu_0^*=\frac{(\mu_0+v_0x_i)}{(1+v_0)}$.
- However, $(\beta_0|\beta_1, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_0|\beta_1, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$, and respectively, $(\beta_1|\beta_0, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_1|\beta_0, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$.
 - do not have mathematically explicit posterior distributions

- $(\tau_{x_i}|D_i,\mu_0,v_0) \sim Gamma(\frac{a^*}{2},\frac{b^*}{2})$
- $(\mu_{x_i}|\tau_{x_i}, D_i, \mu_0, v_0) \sim N(\mu_0^*, \tau_x^{-1} \frac{v_0}{(v_0+1)})$
- Here $a^*=(a+1)$, $b^*=(b+\frac{(x_i-\mu_0)^2}{(1+v_0)})$, and $\mu_0^*=\frac{(\mu_0+v_0x_i)}{(1+v_0)}$.
- However, $(\beta_0|\beta_1, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_0|\beta_1, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$, and respectively, $(\beta_1|\beta_2, D, \mu_{\beta_0}, \mu_{\beta_0}, \Sigma) \propto f(\beta_1|\beta_2, \mu_{\beta_0}, \mu_{\beta_0}, \Sigma)f(D)$
 - do not have mathematically explicit posterior distributions

Conditional distributions of primary Parameters

- \bullet $(au_{x_i}|D_i,\mu_0,v_0)\sim extit{Gamma}(rac{a^*}{2},rac{b^*}{2})$
- $(\mu_{x_i}|\tau_{x_i}, D_i, \mu_0, v_0) \sim N(\mu_0^*, \tau_x^{-1} \frac{v_0}{(v_0+1)})$
- Here $a^*=(a+1)$, $b^*=(b+\frac{(x_i-\mu_0)^2}{(1+v_0)})$, and $\mu_0^*=\frac{(\mu_0+v_0x_i)}{(1+v_0)}$.
- However, $(\beta_0|\beta_1, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_0|\beta_1, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$, and respectively, $(\beta_1|\beta_0, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_1|\beta_0, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$.

do not have mathematically explicit posterior distributions.

Conditional distributions of primary Parameters and Hyper-parameters

- $(\tau_{x_i}|D_i,\mu_0,v_0)\sim \textit{Gamma}(\frac{a^*}{2},\frac{b^*}{2})$
- $(\mu_{x_i}|\tau_{x_i}, D_i, \mu_0, v_0) \sim N(\mu_0^*, \tau_x^{-1} \frac{v_0}{(v_0+1)})$
- Here $a^* = (a+1)$, $b^* = (b + \frac{(x_i \mu_0)^2}{(1+v_0)})$, and $\mu_0^* = \frac{(\mu_0 + v_0 x_i)}{(1+v_0)}$.
- However, $(\beta_0|\beta_1, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_0|\beta_1, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$, and respectively, $(\beta_1|\beta_2, D, \mu_{\beta_0}, \mu_{\beta_0}, \Sigma) \propto f(\beta_1|\beta_2, \mu_{\beta_0}, \mu_{\beta_0}, \Sigma)f(D)$
 - $(\beta_1|\beta_0, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto r(\beta_1|\beta_0, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)r(D).$ do not have mathematically explicit posterior distributions

- ullet $(au_{x_i}|D_i,\mu_0,v_0)\sim extit{Gamma}(rac{a^*}{2},rac{b^*}{2})$
- $(\mu_{x_i}|\tau_{x_i}, D_i, \mu_0, v_0) \sim N(\mu_0^*, \tau_x^{-1} \frac{v_0}{(v_0+1)})$
- Here $a^*=(a+1)$, $b^*=(b+\frac{(x_i-\mu_0)^2}{(1+v_0)})$, and $\mu_0^*=\frac{(\mu_0+v_0x_i)}{(1+v_0)}$.
- However, $(\beta_0|\beta_1, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_0|\beta_1, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$, and respectively,
 - $(\beta_1|\beta_0, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_1|\beta_0, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D).$ do not have mathematically explicit posterior distributions

- \bullet $(au_{x_i}|D_i,\mu_0,v_0)\sim extit{Gamma}(rac{a^*}{2},rac{b^*}{2})$
- $(\mu_{x_i}|\tau_{x_i}, D_i, \mu_0, v_0) \sim N(\mu_0^*, \tau_x^{-1} \frac{v_0}{(v_0+1)})$
- Here $a^* = (a+1)$, $b^* = (b + \frac{(x_i \mu_0)^2}{(1+v_0)})$, and $\mu_0^* = \frac{(\mu_0 + v_0 x_i)}{(1+v_0)}$.
- However, $(\beta_0|\beta_1, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_0|\beta_1, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$, and respectively, $(\beta_1|\beta_0, D, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma) \propto f(\beta_1|\beta_0, \mu_{\beta_0}, \mu_{\beta_1}, \Sigma)f(D)$. do not have mathematically explicit posterior distributions.

Outline

Conditional distributions of primary Parameters and Hyper-parameters

$$\beta=(\beta_0,\beta_1)^T$$
, $\mu_\beta=(\mu_{\beta_0},\mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta, \mu_{\beta}) \sim W(b+n, B^*)$, where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}$.
- $(\mu_0|v_0, \mu_x, \tau_x, m, V) \sim N(m^*, V^*)$, where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_x \mu_x}{\sum \tau_x}$, $t = \frac{V}{(V + \frac{V_0}{\sum V})}$, $V^* = \frac{t V_0}{\sum \tau_x}$
- $(v_0^{-1}|\mu_0, \mu_{\mathsf{X}}, \tau_{\mathsf{X}}, w, W) \sim \mathsf{Gamma}(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum_{n=1}^{\infty} \frac{(\mu_{\mathsf{X}} - \mu_0)^2}{2}.$

Outline

Conditional distributions of primary Parameters and Hyper-parameters

$$\beta = (\beta_0, \beta_1)^T$$
, $\mu_\beta = (\mu_{\beta_0}, \mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta, \mu_{\beta}) \sim W(b+n, B^*),$ where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}.$
- $(\mu_0|v_0, \mu_X, \tau_X, m, V) \sim N(m^*, V^*),$ where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_X \mu_X}{\sum \tau_X}, \ t = \frac{V}{(V + \frac{V_0}{\sum \tau_X})}, \ V^* = \frac{tv_0}{\sum \tau_X}$
- $(v_0^{-1}|\mu_0, \mu_x, \tau_x, w, W) \sim Gamma(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum_{x} \frac{(\mu_x - \mu_0)^2}{x}$.

Outline

Conditional distributions of primary Parameters and Hyper-parameters

$$\beta = (\beta_0, \beta_1)^T$$
, $\mu_\beta = (\mu_{\beta_0}, \mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta, \mu_{\beta}) \sim W(b+n, B^*),$ where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}.$
- $(\mu_0|v_0, \mu_X, \tau_X, m, V) \sim N(m^*, V^*),$ where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_X \mu_X}{\sum \tau_X}, \ t = \frac{V}{\left(V + \frac{v_0}{\sum \tau_Y}\right)}, \ V^* = \frac{tv_0}{\sum \tau_X}$
- $(v_0^{-1}|\mu_0, \mu_{\mathsf{X}}, \tau_{\mathsf{X}}, w, W) \sim \mathsf{Gamma}(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum_{n=1}^{\infty} \frac{(\mu_{\mathsf{X}} - \mu_0)^2}{2}.$

Conditional distributions of primary Parameters and Hyper-parameters

$$\beta = (\beta_0, \beta_1)^T$$
, $\mu_\beta = (\mu_{\beta_0}, \mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta, \mu_{\beta}) \sim W(b+n, B^*),$ where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}.$
- $(\mu_0|v_0, \mu_X, \tau_X, m, V) \sim N(m^*, V^*)$, where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_X \mu_X}{\sum \tau_X}$, $t = \frac{V}{\left(V + \frac{v_0}{\sum \tau_X}\right)}$, $V^* = \frac{tv_0}{\sum \tau_X}$
- $(v_0^{-1}|\mu_0, \mu_X, \tau_X, w, W) \sim Gamma(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum \frac{(\mu_X - \mu_0)^2}{\pi}$.

$$\beta = (\beta_0, \beta_1)^T$$
, $\mu_\beta = (\mu_{\beta_0}, \mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta,\mu_{\beta}) \sim W(b+n,B^*)$, where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}$.
- $(\mu_0|v_0, \mu_X, \tau_X, m, V) \sim N(m^*, V^*)$, where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_X \mu_X}{\sum \tau_X}$, $t = \frac{V}{\left(V + \frac{v_0}{\sum \tau_X}\right)}$, $V^* = \frac{tv_0}{\sum \tau_X}$
- $(v_0^{-1}|\mu_0, \mu_x, \tau_x, w, W) \sim Gamma(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum \frac{(\mu_x - \mu_0)^2}{\tau}.$

Conditional distributions of primary Parameters and Hyper-parameters

$$\beta = (\beta_0, \beta_1)^T$$
, $\mu_\beta = (\mu_{\beta_0}, \mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta,\mu_{\beta}) \sim W(b+n,B^*)$, where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}$.
- $(\mu_0|v_0, \mu_X, \tau_X, m, V) \sim N(m^*, V^*)$, where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_X \mu_X}{\sum \tau_X}$, $t = \frac{V}{\left(V + \frac{v_0}{\sum \tau_X}\right)}$, $V^* = \frac{tv_0}{\sum \tau_X}$.
- $(v_0^{-1}|\mu_0, \mu_x, \tau_x, w, W) \sim Gamma(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum \frac{(\mu_x - \mu_0)^2}{\tau}.$

$$\beta = (\beta_0, \beta_1)^T$$
, $\mu_\beta = (\mu_{\beta_0}, \mu_{\beta_1})^T$ then

- $(\mu_{\beta}|\beta, \Sigma, A) \sim N(a^*, A^*)$, here $A^* = A^{-1} + n\Sigma^{-1}$, $a^* = A^*(A^{-1}\mu_{\beta} + n\Sigma^{-1}\bar{\beta})$, and $\bar{\beta} = (\frac{\sum \beta_0}{n}, \frac{\sum \beta_1}{n})^T$.
- $(\Sigma^{-1}|\beta,\mu_{\beta}) \sim W(b+n,B^*)$, where $B^* = (bB + \sum (\beta - \mu_{\beta})(\beta - \mu_{\beta})^T)^{-1}$.
- $(\mu_0|v_0, \mu_x, \tau_x, m, V) \sim N(m^*, V^*)$, where $m^* = (1-t)m + t \frac{\sum_{i=1}^n \tau_x \mu_x}{\sum \tau_x}$, $t = \frac{V}{(V + \frac{v_0}{\sum \tau_x})}$, $V^* = \frac{tv_0}{\sum \tau_x}$.
- $(v_0^{-1}|\mu_0, \mu_x, \tau_x, w, W) \sim Gamma(\frac{(w+n)}{2}, \frac{(W+N)}{2}),$ where $N = \sum \frac{(\mu_x - \mu_0)^2}{\tau}.$

Posterior distribution for α

Assume $\alpha \sim Gamma(a_0, b_0)$, then

①
$$(\alpha|D, \beta, \mu_x, \tau_x, k, \eta) \sim \pi_1 \Gamma\{a_0 + k, b_0 - \log(\eta)\}\ + \pi_2 \Gamma\{a_0 + k - 1, b_0 - \log(\eta)\}$$

nere,

$$\pi_1 = \frac{(a_0 + k - 1)}{a_0 + k - 1 + n(b_0 - \log(\eta))}, \ \pi_2 = 1 - \pi_1$$

$$(\eta|D,\beta,\mu_{\mathsf{X}}\tau_{\mathsf{X}},k,\alpha)\sim \mathsf{Beta}(\alpha+1,n)$$

Posterior distribution for α

Assume $\alpha \sim Gamma(a_0, b_0)$, then

① $(\alpha|D, \beta, \mu_{\mathsf{x}}, \tau_{\mathsf{x}}, k, \eta) \sim \pi_1 \Gamma\{a_0 + k, b_0 - \log(\eta)\}\ + \pi_2 \Gamma\{a_0 + k - 1, b_0 - \log(\eta)\}$

$$\pi_1 = \frac{(a_0 + k - 1)}{a_0 + k - 1 + n(b_0 - \log(\eta))}, \ \pi_2 = 1 - \pi_1$$

② $(\eta | D, \beta, \mu_{\mathsf{x}} \tau_{\mathsf{x}}, k, \alpha) \sim \mathsf{Beta}(\alpha + 1, \mathsf{n})$

Posterior distribution for α

Assume $\alpha \sim Gamma(a_0, b_0)$, then

here,

$$\pi_1 = \frac{(a_0 + k - 1)}{a_0 + k - 1 + n(b_0 - \log(\eta))}, \ \pi_2 = 1 - \pi_1$$

$$(\eta|D,\beta,\mu_{\mathsf{X}}\tau_{\mathsf{X}},k,\alpha)\sim \mathsf{Beta}(\alpha+1,n)$$

Posterior distribution for α

Assume $\alpha \sim Gamma(a_0, b_0)$, then

$$(\alpha|D, \beta, \mu_{x}, \tau_{x}, k, \eta) \sim \pi_{1} \Gamma\{a_{0} + k, b_{0} - \log(\eta)\}$$

$$+ \pi_{2} \Gamma\{a_{0} + k - 1, b_{0} - \log(\eta)\}$$

here,

$$\pi_1 = \frac{(a_0 + k - 1)}{a_0 + k - 1 + n(b_0 - \log(\eta))}, \ \pi_2 = 1 - \pi_1$$

(
$$\eta | D, \beta, \mu_x \tau_x, k, \alpha$$
) ~ Beta($\alpha + 1, n$)

Outline

Computation of mixing weights

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{i=1,i\neq i}^nq_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(v_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{y_i} \left(\frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{1 - y_i} dF(\beta_0, \beta_1)$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_i|\mu_x,\tau_x) f(\mu_x|\tau_x) f(\tau_x) d\tau_x d\mu_x$$

Outline

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{y_i} \left(\frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{1 - y_i} dF(\beta_0, \beta_1)$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_i|\mu_x,\tau_x) f(\mu_x|\tau_x) f(\tau_x) d\tau_x d\mu_x$$

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{y_i} \left(\frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{1 - y_i} dF(\beta_0, \beta_1)$$

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_i|\mu_x,\tau_x) f(\mu_x|\tau_x) f(\tau_x) d\tau_x d\mu_x$$

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{y_i} \left(\frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right)^{1 - y_i} dF(\beta_0, \beta_1)$$

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_i | \mu_x, \tau_x) f(\mu_x | \tau_x) f(\tau_x) d\tau_x d\mu_x$$

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

$$= \alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$$

$$=\alpha\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\left(\frac{\exp(\beta_0+\beta_1x_i)}{1+\exp(\beta_0+\beta_1x_i)}\right)^{y_i}\left(\frac{1}{1+\exp(\beta_0+\beta_1x_i)}\right)^{1-y_i}dF(\beta_0,\beta_1)$$

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_i | \mu_x, \tau_x) f(\mu_x | \tau_x) f(\tau_x) d\tau_x d\mu_x$$

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$=\alpha\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\left(\frac{\exp(\beta_0+\beta_1x_i)}{1+\exp(\beta_0+\beta_1x_i)}\right)^{y_i}\left(\frac{1}{1+\exp(\beta_0+\beta_1x_i)}\right)^{1-y_i}dF(\beta_0,\beta_1)$$

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_i | \mu_x, \tau_x) f(\mu_x | \tau_x) f(\tau_x) d\tau_x d\mu_x$$

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$=\alpha\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\left(\frac{\exp(\beta_0+\beta_1x_i)}{1+\exp(\beta_0+\beta_1x_i)}\right)^{y_i}\left(\frac{1}{1+\exp(\beta_0+\beta_1x_i)}\right)^{1-y_i}dF\big(\beta_0,\beta_1\big)$$

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_i | \mu_x, \tau_x) f(\mu_x | \tau_x) f(\tau_x) d\tau_x d\mu_x$$

Computation of mixing weights

Reall from the Dirichlet Mixture Models:

$$(\theta_i|\theta^{-i},D_n)\sim q_{0i}G_i(\theta_i|D_i)+\sum_{j=1,j\neq i}^n q_{ij}\delta_{\theta_j}(\theta_i)$$

$$q_{i0} \propto \alpha \int f(D_i|\theta_i) dG_0(\theta_i)$$

= $\alpha \int f(y_i|x_i,\theta_i) f(x_i|\theta_i) dG_0(\theta_i)$

$$=\alpha\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\left(\frac{\exp(\beta_0+\beta_1x_i)}{1+\exp(\beta_0+\beta_1x_i)}\right)^{y_i}\left(\frac{1}{1+\exp(\beta_0+\beta_1x_i)}\right)^{1-y_i}dF(\beta_0,\beta_1)$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_i|\mu_x,\tau_x) f(\mu_x|\tau_x) f(\tau_x) d\tau_x d\mu_x$$

- ① Drawing a new θ_i , i = 1, ..., n from the Dirichlet process.
- 2 Remixing step: Drawing a new $\theta_i^*, j = 1, ..., k$, from its
- ① Drawing a Dirichlet process parameter $[\alpha | \theta^*]$ by first sampling

- Drawing a new θ_i , $i=1,\ldots,n$ from the Dirichlet process. Either it takes old value such as $\theta_j, j \neq i$ or generates new value from the posterior of G_0 depending on the mixing weight q_{0i} and q_{ji} .
 - Note that the posterior samples for β_0 and β_1 are obtained by ARS (Adaptive Rejection Sampling).
- ② Remixing step: Drawing a new $\theta_j^*, j=1,\ldots,k$, from its conditional distribution conditioned by the known number of clusters and the set of indices which maps the original data into k distinct groups or clusters.
- ① Drawing new hyperparameters based on the latest parameter θ^* .
- ① Drawing a Dirichlet process parameter $[\alpha|\theta^*]$ by first sampling $[\eta|\alpha \quad k]$ and then $[\alpha|\eta \quad k]$ where k is the number of distinct values in θ^*

- Drawing a new θ_i , $i=1,\ldots,n$ from the Dirichlet process. Either it takes old value such as $\theta_j, j \neq i$ or generates new value from the posterior of G_0 depending on the mixing weight q_{0i} and q_{ji} .
 - Note that the posterior samples for β_0 and β_1 are obtained by ARS (Adaptive Rejection Sampling).
- ② Remixing step: Drawing a new $\theta_j^*, j=1,\ldots,k$, from its conditional distribution conditioned by the known number of clusters and the set of indices which maps the original data into k distinct groups or clusters.
- ① Drawing new hyperparameters based on the latest parameter θ^* .
- ① Drawing a Dirichlet process parameter $[\alpha|\theta^*]$ by first sampling $[\eta|\alpha\ k]$ and then $[\alpha|\eta\ k]$ where k is the number of distinct values in θ^*

- **1** Drawing a new θ_i , $i=1,\ldots,n$ from the Dirichlet process. Either it takes old value such as $\theta_j, j \neq i$ or generates new value from the posterior of G_0 depending on the mixing weight q_{0i} and q_{ji} .
 - Note that the posterior samples for β_0 and β_1 are obtained by ARS (Adaptive Rejection Sampling).
- ② Remixing step: Drawing a new $\theta_j^*, j=1,\ldots,k$, from its conditional distribution conditioned by the known number of clusters and the set of indices which maps the original data into k distinct groups or clusters.
- **3** Drawing new hyperparameters based on the latest parameter θ^* .
- ① Drawing a Dirichlet process parameter $[\alpha|\theta^*]$ by first sampling $[\eta|\alpha \ k]$ and then $[\alpha|\eta \ k]$ where k is the number of distinct values in θ^*

- **1** Drawing a new θ_i , $i=1,\ldots,n$ from the Dirichlet process. Either it takes old value such as $\theta_j, j \neq i$ or generates new value from the posterior of G_0 depending on the mixing weight q_{0i} and q_{ji} .
 - Note that the posterior samples for β_0 and β_1 are obtained by ARS (Adaptive Rejection Sampling).
- **3** Remixing step: Drawing a new θ_j^* , $j = 1, \ldots, k$, from its conditional distribution conditioned by the known number of clusters and the set of indices which maps the original data into k distinct groups or clusters.
- **3** Drawing new hyperparameters based on the latest parameter θ^* .
- ① Drawing a Dirichlet process parameter $[\alpha|\theta^*]$ by first sampling $[\eta|\alpha \quad k]$ and then $[\alpha|\eta \quad k]$ where k is the number of distinct values in θ^* .

Logistic regression function estimation

Under the assumed structure, $P(D|\theta^*) = P(x|\theta^*)P(y|x,\theta^*)$.

$$P(y|x \ \theta^*) = W_0(x) \int P(y|x \ \theta^*) dG_0 + \sum_{j=1}^k W_j(x) P_j(y|x \ \theta^*)$$

Here,
$$W_0(x) = \frac{\int f(x|\theta^*)dG_0}{\int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$$
 and $W_j(x) = \frac{n_j f(x|\theta^*)}{\alpha \int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$

Therefore,

$$E(y|x \; \theta^*) = \sum_{i=0}^{k} W_j(x) \frac{\exp(\beta_{0j} + \beta_{1j}x)}{1 + \exp(\beta_{0j} + \beta_{1j}x)}$$

Logistic regression function estimation

Under the assumed structure, $P(D|\theta^*) = P(x|\theta^*)P(y|x,\theta^*)$.

$$P(y|x \ \theta^*) = W_0(x) \int P(y|x \ \theta^*) dG_0 + \sum_{j=1}^k W_j(x) P_j(y|x \ \theta^*)$$

Here,
$$W_0(x) = \frac{\int f(x|\theta^*)dG_0}{\int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$$
 and $W_j(x) = \frac{n_j f(x|\theta^*)}{\alpha \int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$

Therefore,

$$E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x) \frac{\exp(\beta_{0j} + \beta_{1j}x)}{1 + \exp(\beta_{0j} + \beta_{1j}x)}$$

Logistic regression function estimation

Under the assumed structure, $P(D|\theta^*) = P(x|\theta^*)P(y|x,\theta^*)$.

$$P(y|x \ \theta^*) = W_0(x) \int P(y|x \ \theta^*) dG_0 + \sum_{j=1}^k W_j(x) P_j(y|x \ \theta^*)$$

Here,
$$W_0(x) = \frac{\int f(x|\theta^*)dG_0}{\int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$$
 and $W_j(x) = \frac{n_j f(x|\theta^*)}{\alpha \int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$

Therefore,

$$E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x) \frac{\exp(\beta_{0j} + \beta_{1j}x)}{1 + \exp(\beta_{0j} + \beta_{1j}x)}$$

Logistic regression function estimation

Under the assumed structure, $P(D|\theta^*) = P(x|\theta^*)P(y|x,\theta^*)$.

$$P(y|x \ \theta^*) = W_0(x) \int P(y|x \ \theta^*) dG_0 + \sum_{j=1}^k W_j(x) P_j(y|x \ \theta^*)$$

Here,
$$W_0(x) = \frac{\int f(x|\theta^*)dG_0}{\int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$$
 and $W_j(x) = \frac{n_j f(x|\theta^*)}{\alpha \int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$

$$E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x) \frac{\exp(\beta_{0j} + \beta_{1j}x)}{1 + \exp(\beta_{0j} + \beta_{1j}x)}$$

Logistic regression function estimation

Under the assumed structure, $P(D|\theta^*) = P(x|\theta^*)P(y|x,\theta^*)$.

$$P(y|x \ \theta^*) = W_0(x) \int P(y|x \ \theta^*) dG_0 + \sum_{j=1}^k W_j(x) P_j(y|x \ \theta^*)$$

Here,
$$W_0(x) = \frac{\int f(x|\theta^*)dG_0}{\int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$$

and $W_j(x) = \frac{n_j f(x|\theta^*)}{\alpha \int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$

Therefore,

$$E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x) \frac{\exp(\beta_{0j} + \beta_{1j}x)}{1 + \exp(\beta_{0j} + \beta_{1j}x)}$$

Logistic regression function estimation

Under the assumed structure, $P(D|\theta^*) = P(x|\theta^*)P(y|x,\theta^*)$.

$$P(y|x \ \theta^*) = W_0(x) \int P(y|x \ \theta^*) dG_0 + \sum_{j=1}^k W_j(x) P_j(y|x \ \theta^*)$$

Here,
$$W_0(x) = \frac{\int f(x|\theta^*)dG_0}{\int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$$
 and $W_j(x) = \frac{n_j f(x|\theta^*)}{\alpha \int f(x|\theta^*)dG_0 + \sum_{j=1}^k n_j f(x|\theta^*)}$ Therefore

Therefore,

$$E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x) \frac{\exp(\beta_{0j} + \beta_{1j}x)}{1 + \exp(\beta_{0j} + \beta_{1j}x)}$$

Simulated Examples

Outline

Example 1.

(1)
$$P(y = 1|x) = \frac{\exp(-0.4(x-3)^2 + 3)}{1 + \exp(-0.4(x-3)^2 + 3)}$$
, n=100

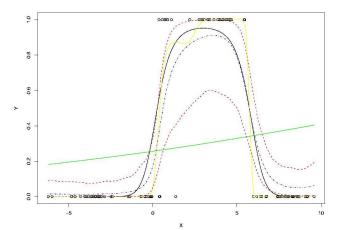
Outline

Example 1.

(1)
$$P(y = 1|x) = \frac{\exp(-0.4(x-3)^2 + 3)}{1 + \exp(-0.4(x-3)^2 + 3)}$$
, n=100

Example 1.

(1)
$$P(y = 1|x) = \frac{\exp(-0.4(x-3)^2 + 3)}{1 + \exp(-0.4(x-3)^2 + 3)}$$
, n=100



Example 2.

(2)
$$P(y = 1|x) = \frac{\exp(0.2 + 0.01x)}{1 + \exp(0.2 + 0.01x)} I(x \le 0) + \frac{\exp(0.2 + 2x)}{1 + \exp(0.2 + 2x)} I(x > 0)$$

n=200

Example 2.

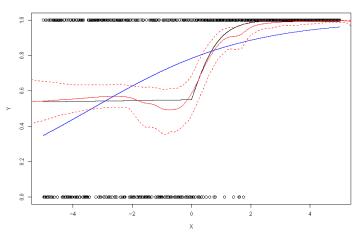
(2)
$$P(y = 1|x) = \frac{\exp(0.2 + 0.01x)}{1 + \exp(0.2 + 0.01x)} I(x \le 0) + \frac{\exp(0.2 + 2x)}{1 + \exp(0.2 + 2x)} I(x > 0),$$

n=200

Example 2.

(2)
$$P(y = 1|x) = \frac{\exp(0.2 + 0.01x)}{1 + \exp(0.2 + 0.01x)} I(x \le 0) + \frac{\exp(0.2 + 2x)}{1 + \exp(0.2 + 2x)} I(x > 0),$$

 $n = 200$



The performance of our method

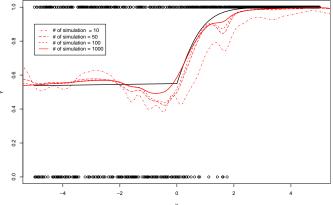
 Our method seems to converge to the target distribution very quickly.

The performance of our method

 Our method seems to converge to the target distribution very quickly.

The performance of our method

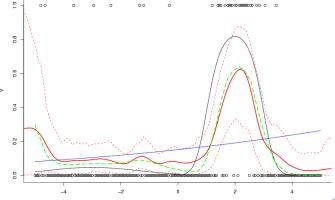
 Our method seems to converge to the target distribution very quickly.



(3)
$$P(y = 1|x) = \frac{\exp(-3 - 0.2(x+3)^2)}{1 + \exp(-3 - 0.2(x+3)^2)} I(x \le 0) + \frac{\exp(1.5 - 2(x-2)^2)}{1 + \exp(1.5 - 2(x-2)^2)} I(x > 0), n=200$$

(3)
$$P(y = 1|x) = \frac{\exp(-3 - 0.2(x+3)^2)}{1 + \exp(-3 - 0.2(x+3)^2)} I(x \le 0) + \frac{\exp(1.5 - 2(x-2)^2)}{1 + \exp(1.5 - 2(x-2)^2)} I(x > 0), n=200$$

(3)
$$\begin{split} P(y=1|x) &= \frac{\exp(-3-0.2(x+3)^2)}{1+\exp(-3-0.2(x+3)^2)} I(x \leq 0) + \\ &\quad \frac{\exp(1.5-2(x-2)^2)}{1+\exp(1.5-2(x-2)^2)} I(x > 0), \; n{=}200 \end{split}$$

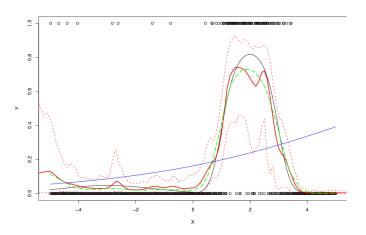


Example 3.

After sample size is increased, n = 500.

Example 3.

After sample size is increased, n = 500.



- α : As α values increases Dirichlet process generates more clusters and it gives less smoother smoothing.
- τ : The bigger value of τ gives less smoothing (or more wiggly curve) same as the smaller window size in Kernel Smoothing.
- We are going to illustrate how the different choice of priors for τ affects the amount of smoothing of the estimated curve with the following function:

$$P(y = 1|x) = \frac{\exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}{1 + \exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}$$

- α : As α values increases Dirichlet process generates more clusters and it gives less smoother smoothing.
- τ : The bigger value of τ gives less smoothing (or more wiggly curve) same as the smaller window size in Kernel Smoothing.
- We are going to illustrate how the different choice of priors for τ affects the amount of smoothing of the estimated curve with the following function:

$$P(y = 1|x) = \frac{\exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}{1 + \exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}$$

- α : As α values increases Dirichlet process generates more clusters and it gives less smoother smoothing.
- τ : The bigger value of τ gives less smoothing (or more wiggly curve) same as the smaller window size in Kernel Smoothing.
- We are going to illustrate how the different choice of priors for τ affects the amount of smoothing of the estimated curve with the following function:

$$P(y=1|x) = \frac{\exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}{1 + \exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}$$

- α : As α values increases Dirichlet process generates more clusters and it gives less smoother smoothing.
- τ : The bigger value of τ gives less smoothing (or more wiggly curve) same as the smaller window size in Kernel Smoothing.
- We are going to illustrate how the different choice of priors for τ affects the amount of smoothing of the estimated curve with the following function:

$$P(y=1|x) = \frac{\exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}{1 + \exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}$$

- α : As α values increases Dirichlet process generates more clusters and it gives less smoother smoothing.
- τ : The bigger value of τ gives less smoothing (or more wiggly curve) same as the smaller window size in Kernel Smoothing.
- We are going to illustrate how the different choice of priors for τ affects the amount of smoothing of the estimated curve with the following function:

$$P(y = 1|x) = \frac{\exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}{1 + \exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}$$

- α : As α values increases Dirichlet process generates more clusters and it gives less smoother smoothing.
- τ : The bigger value of τ gives less smoothing (or more wiggly curve) same as the smaller window size in Kernel Smoothing.
- We are going to illustrate how the different choice of priors for τ affects the amount of smoothing of the estimated curve with the following function:

$$P(y=1|x) = \frac{\exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}{1 + \exp(\exp(-2(x+2.5)^2+2) + \exp(-(x-2.5)^2/8) - 2)}$$

Jillulated examples

Simulated examples

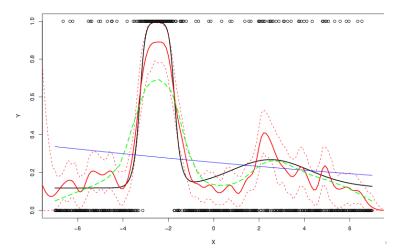
 $au \sim \textit{Gamma}(200, 5)$

Simulated examples

 $au \sim \textit{Gamma}(200, 5)$

Simulated examples

$\tau \sim \textit{Gamma}(200, 5)$



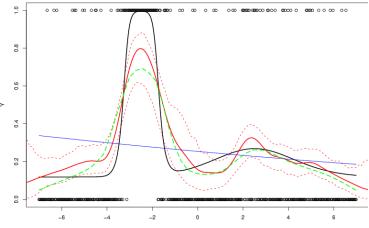
Simulated examples

 $au \sim \textit{Gamma}(200, 20)$

 $au \sim \textit{Gamma}(200, 20)$

Simulated examples

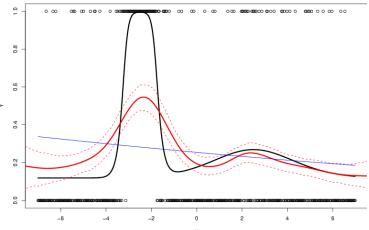
$\tau \sim \textit{Gamma}(200, 20)$



 $au \sim \textit{Gamma}(5,1)$

Simulated examples

$\tau \sim \textit{Gamma}(5,1)$



Outline

Simulated examples

The Low birth Weight Data example

The non-smoking groups of mothers Priors: $\tau \sim \text{Gamma}(10,400)$ and $\alpha \sim \text{Gamma}(50,1)$. We did the transformation of X: X - mean(X), n=115

Outline

Simulated examples

The Low birth Weight Data example

The non-smoking groups of mothers

```
Priors: \tau \sim Gamma(10, 400) and \alpha \sim Gamma(50, 1). We did the transformation of X: X - mean(X), n = 115.
```

The Low birth Weight Data example

The non-smoking groups of mothers Priors: $\tau \sim \text{Gamma}(10,400)$ and $\alpha \sim \text{Gamma}(50,1)$. We did the transformation of X: X - mean(X), n=115

The Low birth Weight Data example

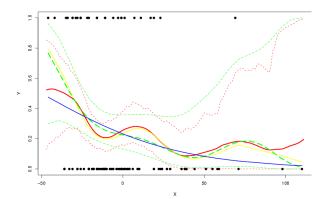
The non-smoking groups of mothers Priors: $\tau \sim \text{Gamma}(10,400)$ and $\alpha \sim \text{Gamma}(50,1)$. We did the transformation of X: X - mean(X), n=115.

The Low birth Weight Data example

The non-smoking groups of mothers

Priors: $\tau \sim \textit{Gamma}(10,400)$ and $\alpha \sim \textit{Gamma}(50,1)$.

We did the transformation of X: X - mean(X), n = 115.



The Low birth Weight Data example

The smoking groups of mothers Priors: $\tau \sim \text{Gamma}(10,800)$ and $\alpha \sim \text{Gamma}(10,1)$. We did the transformation of X: X - mean(X), n=74.

Simulated examples

The Low birth Weight Data example

The smoking groups of mothers

Priors: $\tau \sim \text{Gamma}(10, 800)$ and $\alpha \sim \text{Gamma}(10, 1)$. We did the transformation of X: X - mean(X), n = 74.

Simulated examples

The Low birth Weight Data example

The smoking groups of mothers Priors: $\tau \sim \text{Gamma}(10,800)$ and $\alpha \sim \text{Gamma}(10,1)$. We did the transformation of X: X - mean(X), n=74

The Low birth Weight Data example

The smoking groups of mothers

Priors: $\tau \sim Gamma(10, 800)$ and $\alpha \sim Gamma(10, 1)$.

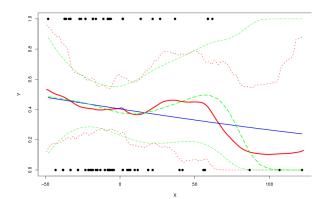
We did the transformation of X: X - mean(X), n = 74.

The Low birth Weight Data example

The smoking groups of mothers

Priors: $\tau \sim \textit{Gamma}(10,800)$ and $\alpha \sim \textit{Gamma}(10,1)$.

We did the transformation of X: X - mean(X), n = 74.



Bayesian semi-parametric Poisson regression

The model structure for Poisson

$$y_i|x_i \sim Poi(\lambda_i)$$
, where $\lambda_i = \exp(\beta_{0i} + \beta_{1i}x_i)$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$
 $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$
 $G \sim D(G_0, \alpha)$

Bayesian semi-parametric Poisson regression

The model structure for Poisson:

$$y_i|x_i \sim Poi(\lambda_i), \quad \text{where} \quad \lambda_i = \exp(\beta_{0i} + \beta_{1i}x_i)$$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$ $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$ $G \sim D(G_0, \alpha)$

Bayesian semi-parametric Poisson regression

The model structure for Poisson:

$$y_i|x_i \sim Poi(\lambda_i), \quad \text{where} \quad \lambda_i = \exp(\beta_{0i} + \beta_{1i}x_i)$$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$ $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$ $G \sim D(G_0, \alpha)$

Bayesian semi-parametric Poisson regression

The model structure for Poisson:

$$y_i|x_i \sim Poi(\lambda_i), \quad ext{where} \quad \lambda_i = \exp(eta_{0i} + eta_{1i}x_i)$$
 $x_i \sim \mathcal{N}(\mu_{xi}, au_{xi}^{-1})$ $heta_i = (eta_{0i}, eta_{1i}, \mu_{xi}, au_{xi}) \sim G$ $G \sim \mathcal{D}(G_0, lpha)$

The mixing weights

Outline

$$q_{i0} \propto \alpha \int f(D_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int f(y_{i}|x_{i},\theta_{i})f(x_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\exp(\beta_{0} + \beta_{1}x_{i}))(\exp(\beta_{0} + \beta_{1}x_{i}))^{y_{i}}}{y_{i}!}dF(\beta_{0},\beta_{1})$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_{i}|\mu_{x},\tau_{x})f(\mu_{x}|\tau_{x})f(\tau_{x})d\tau_{x}d\mu_{x}$$

- For the first part of integration, again Monte Carlo method is
- $q_{ij} \propto f(D_i|\theta_i) = f(y_i|x_i|\theta_i)f(x_i|\theta_i)$ are easily evaluated.
- The posterior samples of (β_0, β_1) are again generated by ARS.

Outline

The mixing weights

$$q_{i0} \propto \alpha \int f(D_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int f(y_{i}|x_{i},\theta_{i})f(x_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\exp(\beta_{0} + \beta_{1}x_{i}))(\exp(\beta_{0} + \beta_{1}x_{i}))^{y_{i}}}{y_{i}!}dF(\beta_{0},\beta_{1})$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_{i}|\mu_{x},\tau_{x})f(\mu_{x}|\tau_{x})f(\tau_{x})d\tau_{x}d\mu_{x}$$

- For the first part of integration, again Monte Carlo method is
- $q_{ij} \propto f(D_i|\theta_i) = f(y_i|x_i|\theta_i)f(x_i|\theta_i)$ are easily evaluated.
- The posterior samples of (β_0, β_1) are again generated by ARS.

The mixing weights

$$q_{i0} \propto \alpha \int f(D_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int f(y_{i}|x_{i},\theta_{i})f(x_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\exp(\beta_{0} + \beta_{1}x_{i}))(\exp(\beta_{0} + \beta_{1}x_{i}))^{y_{i}}}{y_{i}!}dF(\beta_{0},\beta_{1})$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_{i}|\mu_{x},\tau_{x})f(\mu_{x}|\tau_{x})f(\tau_{x})d\tau_{x}d\mu_{x}$$

- For the first part of integration, again Monte Carlo method is applied.
- $q_{ii} \propto f(D_i|\theta_i) = f(y_i|x_i,\theta_i)f(x_i|\theta_i)$ are easily evaluated.
- The posterior samples of (β_0, β_1) are again generated by ARS.

The mixing weights

$$q_{i0} \propto \alpha \int f(D_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int f(y_{i}|x_{i},\theta_{i})f(x_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\exp(\beta_{0} + \beta_{1}x_{i}))(\exp(\beta_{0} + \beta_{1}x_{i}))^{y_{i}}}{y_{i}!}dF(\beta_{0},\beta_{1})$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_{i}|\mu_{x},\tau_{x})f(\mu_{x}|\tau_{x})f(\tau_{x})d\tau_{x}d\mu_{x}$$

- For the first part of integration, again Monte Carlo method is applied.
- $q_{ij} \propto f(D_i|\theta_i) = f(y_i|x_i|\theta_i)f(x_i|\theta_i)$ are easily evaluated.
- The posterior samples of (β_0, β_1) are again generated by ARS.

The mixing weights

$$q_{i0} \propto \alpha \int f(D_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int f(y_{i}|x_{i},\theta_{i})f(x_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\exp(\beta_{0} + \beta_{1}x_{i}))(\exp(\beta_{0} + \beta_{1}x_{i}))^{y_{i}}}{y_{i}!}dF(\beta_{0},\beta_{1})$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_{i}|\mu_{x},\tau_{x})f(\mu_{x}|\tau_{x})f(\tau_{x})d\tau_{x}d\mu_{x}$$

- For the first part of integration, again Monte Carlo method is applied.
- $q_{ii} \propto f(D_i|\theta_i) = f(y_i|x_i|\theta_i)f(x_i|\theta_i)$ are easily evaluated.
- The posterior samples of (β_0, β_1) are again generated by ARS.

The mixing weights

$$q_{i0} \propto \alpha \int f(D_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int f(y_{i}|x_{i},\theta_{i})f(x_{i}|\theta_{i})dG_{0}(\theta_{i})$$

$$= \alpha \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\exp(\beta_{0} + \beta_{1}x_{i}))(\exp(\beta_{0} + \beta_{1}x_{i}))^{y_{i}}}{y_{i}!}dF(\beta_{0},\beta_{1})$$

$$\cdot \int_{-\infty}^{\infty} \int_{0}^{\infty} f(x_{i}|\mu_{x},\tau_{x})f(\mu_{x}|\tau_{x})f(\tau_{x})d\tau_{x}d\mu_{x}$$

- For the first part of integration, again Monte Carlo method is applied.
- $q_{ii} \propto f(D_i|\theta_i) = f(y_i|x_i|\theta_i)f(x_i|\theta_i)$ are easily evaluated.
- The posterior samples of (β_0, β_1) are again generated by ARS.

- 14

Example 1.

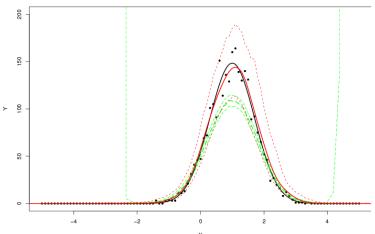
(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100

Example 1.

(1)
$$E(Y|X = x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100

Example 1.

(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100



Example 2.

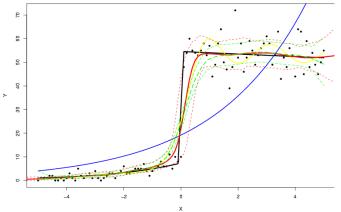
(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0)$$
, n=100

Example 2.

(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0)$$
, n=100

Example 2.

(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0), n=100$$



Example 3.

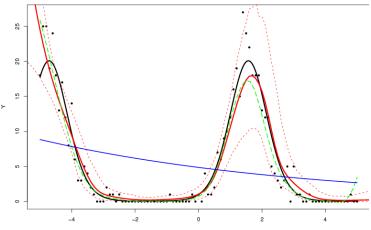
(3)
$$E(Y|X = x) = \lambda = \exp(3\sin(x)), n=10$$

Example 3.

(3)
$$E(Y|X = x) = \lambda = \exp(3\sin(x))$$
, n=100

Example 3.

(3)
$$E(Y|X = x) = \lambda = \exp(3\sin(x))$$
, n=100



Outline

Example 4.

(4)
$$E(Y|X = x) = \lambda = \exp(-0.5(x+2)^2 + 1)I(x \le 0) + \exp(-2(x-2)^2 + 4)I(x > 0), n=100$$

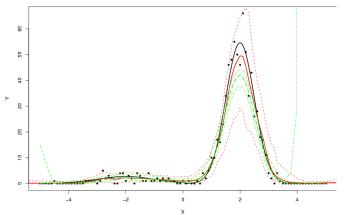
Outline

Example 4.

(4)
$$E(Y|X = x) = \lambda = \exp(-0.5(x+2)^2 + 1)I(x \le 0) + \exp(-2(x-2)^2 + 4)I(x > 0), n=100$$

Example 4.

(4)
$$E(Y|X = x) = \lambda = \exp(-0.5(x+2)^2 + 1)I(x \le 0) + \exp(-2(x-2)^2 + 4)I(x > 0), n=100$$



Poisson regression function

(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100

Poisson regression function

How our method works?

(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100

Poisson regression function

How our method works?

(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100

Poisson regression function

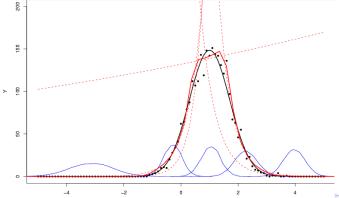
How our method works?

(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100

Poisson regression function

How our method works?

(1)
$$E(Y|X=x) = \lambda = \exp(-(x-1)^2 + 5)$$
, n=100



Outline

Poisson regression function

(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0), n=100$$

Simulation study

Poisson regression function

(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0)$$
, n=100

We took the sampled parameters after 709th iteration: k = 5.

Poisson regression function

(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0)$$
, n=100

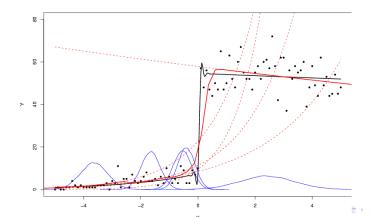
We took the sampled parameters after 709th iteration: k = 5.

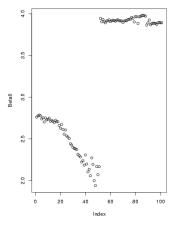
Simulation study

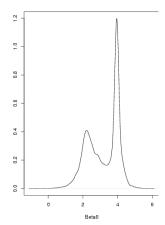
Poisson regression function

(2)
$$E(Y|X = x) = \lambda = \exp(0.4x + 2)I(x \le 0) + \exp(-0.01x + 4)I(x > 0)$$
, n=100

We took the sampled parameters after 709th iteration: k = 5.





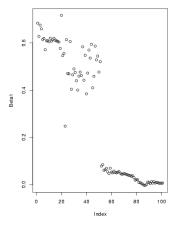


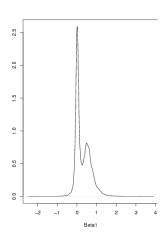
Simulation Study

Posterior distribution of β_0 and β_1

Simulation study

Posterior distribution of β_0 and β_1





Simulation study

Discussion and Future work

Renefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 , which requires a numerical integration for each iteration?
- How heavy is the cost of computing to implement the method?

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 , which requires a numerical integration for each iteration?
- How heavy is the cost of computing to implement the method?

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with
- It is conceptually easy and provides easy-to-implement
- We can directly obtain the distributions of the primary

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 ,
- How heavy is the cost of computing to implement the

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement
- We can directly obtain the distributions of the primary

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 ,
- How heavy is the cost of computing to implement the

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 , which requires a numerical integration for each iteration?
- How heavy is the cost of computing to implement the method?

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 ,
- How heavy is the cost of computing to implement the

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 ,
- How heavy is the cost of computing to implement the 4 D > 4 P > 4 B > 4 B > B 9 9 P

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 ,
- How heavy is the cost of computing to implement the

Discussion

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 , which requires a numerical integration for each iteration?
- How heavy is the cost of computing to implement the

Outline Discussion

Discussion

Benefit of our method

- It is an effective way of estimating the true Logistic and Poisson regression functions, especially when the functions are spatially heterogenous.
- It is a new way of doing semi-parametric regressions with Bayesian perspective
- It is conceptually easy and provides easy-to-implement simulation environment.
- We can directly obtain the distributions of the primary parameters of interests

- How sensitive our method to the choice of priors?
- How good approximation of our Dirichlet mixing weight, q_0 , which requires a numerical integration for each iteration?
- How heavy is the cost of computing to implement the method?

- The multivariate extension of our work should be studied
- This method can also be applied to estimate the hazard

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$

Future work

- The multivariate extension of our work should be studied further.
- This method can also be applied to estimate the hazard function in Survival Analysis.

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having an exponential distribution with parameter λ_i .
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$ if y_i is right censored and $\delta_i = 1$ if y_i is a true failure time.

Future work

- The multivariate extension of our work should be studied further.
- This method can also be applied to estimate the hazard function in Survival Analysis.

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having an exponential distribution with parameter λ_i .
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$ if y_i is right censored and $\delta_i = 1$ if y_i is a true failure time.

Future work

- The multivariate extension of our work should be studied further.
- This method can also be applied to estimate the hazard function in Survival Analysis.

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having an exponential distribution with parameter λ_i .
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$ if y_i is right censored and $\delta_i = 1$ if y_i is a true failure time.

Future work

- The multivariate extension of our work should be studied further.
- This method can also be applied to estimate the hazard function in Survival Analysis.

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having an exponential distribution with parameter λ_i .
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$ if y_i is right censored and $\delta_i = 1$ if y_i is a true failure time.

Future work

- The multivariate extension of our work should be studied further.
- This method can also be applied to estimate the hazard function in Survival Analysis.

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having an exponential distribution with parameter λ_i .
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$ if y_i is right censored and $\delta_i = 1$ if y_i is a true failure time.

Future work

Future work

- The multivariate extension of our work should be studied further.
- This method can also be applied to estimate the hazard function in Survival Analysis.

- Let $y = (y_1, y_2, \dots, y_n)'$ be a survival time, and each having an exponential distribution with parameter λ_i .
- Let $\delta = (\delta_1, \delta_2, \dots, \delta_n)'$ be a censoring indicator, where $\delta_i = 0$ if y_i is right censored and $\delta_i = 1$ if y_i is a true failure time.

Survival Analysis

Our model can be written as:

$$y_i|x_i \sim Exp(\lambda_i)$$
, where $\lambda_i = \beta_{0i} + \beta_{1i}x_i$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$
 $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$
 $G \sim D(G_0, \alpha)$

$$L(\beta|D) = \prod_{i=1}^{n} f(y_i|\lambda_i)^{\delta_i} S(y_i|\lambda_i)^{(1-\delta_i)}$$

$$= \exp\{\sum_{i=1}^{n} \delta_i (\beta_{0i} + \beta_{1i}x_i)\} \exp\{-\sum_{i=1}^{n} y_i \exp(\beta_{0i} + \beta_{1i}x_i)\}$$

Survival Analysis

Our model can be written as:

$$y_i|x_i \sim Exp(\lambda_i)$$
, where $\lambda_i = \beta_{0i} + \beta_{1i}x_i$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$
 $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$
 $G \sim D(G_0, \alpha)$

$$L(\beta|D) = \prod_{i=1}^{n} f(y_{i}|\lambda_{i})^{\delta_{i}} S(y_{i}|\lambda_{i})^{(1-\delta_{i})}$$

$$= \exp\{\sum_{i=1}^{n} \delta_{i}(\beta_{0i} + \beta_{1i}x_{i})\} \exp\{-\sum_{i=1}^{n} y_{i} \exp(\beta_{0i} + \beta_{1i}x_{i})\}$$

Survival Analysis

Our model can be written as:

$$y_i|x_i \sim Exp(\lambda_i)$$
, where $\lambda_i = \beta_{0i} + \beta_{1i}x_i$
 $x_i \sim N(\mu_{xi}, \tau_{xi}^{-1})$
 $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim G$
 $G \sim D(G_0, \alpha)$

The specification of G_0 and hyper-parameters are same as Logistic and Poisson case.

$$L(\beta|D) = \prod_{i=1}^{n} f(y_{i}|\lambda_{i})^{\delta_{i}} S(y_{i}|\lambda_{i})^{(1-\delta_{i})}$$

$$= \exp\{\sum_{i=1}^{n} \delta_{i}(\beta_{0i} + \beta_{1i}x_{i})\} \exp\{-\sum_{i=1}^{n} y_{i} \exp(\beta_{0i} + \beta_{1i}x_{i})\}$$

Our model can be written as:

$$y_i|x_i \sim \textit{Exp}(\lambda_i), \quad \text{where} \quad \lambda_i = \beta_{0i} + \beta_{1i}x_i$$
 $x_i \sim \textit{N}(\mu_{xi}, \tau_{xi}^{-1})$ $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim \textit{G}$ $G \sim \textit{D}(G_0, \alpha)$

The specification of G_0 and hyper-parameters are same as Logistic and Poisson case.

$$L(\beta|D) = \prod_{i=1}^{n} f(y_{i}|\lambda_{i})^{\delta_{i}} S(y_{i}|\lambda_{i})^{(1-\delta_{i})}$$

$$= \exp\{\sum_{i=1}^{n} \delta_{i}(\beta_{0i} + \beta_{1i}x_{i})\} \exp\{-\sum_{i=1}^{n} y_{i} \exp(\beta_{0i} + \beta_{1i}x_{i})\}$$

Our model can be written as:

$$y_i|x_i \sim \textit{Exp}(\lambda_i), \quad \text{where} \quad \lambda_i = \beta_{0i} + \beta_{1i}x_i$$
 $x_i \sim \textit{N}(\mu_{xi}, \tau_{xi}^{-1})$
 $\theta_i = (\beta_{0i}, \beta_{1i}, \mu_{xi}, \tau_{xi}) \sim \textit{G}$
 $\textit{G} \sim \textit{D}(\textit{G}_0, \alpha)$

The specification of G_0 and hyper-parameters are same as Logistic and Poisson case.

$$L(\beta|D) = \prod_{i=1}^{n} f(y_{i}|\lambda_{i})^{\delta_{i}} S(y_{i}|\lambda_{i})^{(1-\delta_{i})}$$

$$= \exp\{\sum_{i=1}^{n} \delta_{i} (\beta_{0i} + \beta_{1i}x_{i})\} \exp\{-\sum_{i=1}^{n} y_{i} \exp(\beta_{0i} + \beta_{1i}x_{i})\}\}$$

$$h(x) = E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x)(\beta_{0j} + \beta_{1j}x)$$

- It would be deduced to a few mixtures of linear functions weighted by functions of marginal distributions of X.
- Now we have a hazard function which is a mixtures of linear functions, and it would provide to fitting the wide range of spatially heterogenous hazard functions.

$$h(x) = E(y|x \; \theta^*) = \sum_{j=0}^k W_j(x)(\beta_{0j} + \beta_{1j}x)$$

- It would be deduced to a few mixtures of linear functions.
- Now we have a hazard function which is a mixtures of linear

$$h(x) = E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x)(\beta_{0j} + \beta_{1j}x)$$

- It would be deduced to a few mixtures of linear functions weighted by functions of marginal distributions of X.
- Now we have a hazard function which is a mixtures of linear functions, and it would provide to fitting the wide range of spatially heterogenous hazard functions.

$$h(x) = E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x)(\beta_{0j} + \beta_{1j}x)$$

- It would be deduced to a few mixtures of linear functions. weighted by functions of marginal distributions of X.
- Now we have a hazard function which is a mixtures of linear

$$h(x) = E(y|x \; \theta^*) = \sum_{j=0}^{k} W_j(x)(\beta_{0j} + \beta_{1j}x)$$

- It would be deduced to a few mixtures of linear functions. weighted by functions of marginal distributions of X.
- Now we have a hazard function which is a mixtures of linear functions, and it would provide to fitting the wide range of spatially heterogenous hazard functions.

The End